matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration bzgl. eines BM
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Integration bzgl. eines BM
Integration bzgl. eines BM < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration bzgl. eines BM: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 Mi 21.01.2015
Autor: drossel

Hallo. In meinem Skript steht:
Sei X ein metrischer Raum. Für eine Borelmeßbare einfache Funktion [mm] $f:X\to\mathbb{K}$, $f=\sum_{k=1}^na_k\chi_{A_i}$, [/mm] wobei [mm] $a_i\in \mathbb{K}$, $A_i\in B_X$ ($B_X$=Borelsche-\sigma-Algebra [/mm] von X), wird das Integral von f bezüglich eines signierten/komplexen Maß [mm] $\mu:B_X\to \mathbb{K}$ [/mm] in natürlicher Weise definiert als:
[mm] $\int_Xfd\mu:=\sum_{k=1}^na_k\mu (A_i)$. [/mm]  

1. Ich will wissen wie man zeigt, dass der Wert nicht von der Wahl der Darstellung von f abhängt. Wir haben nur gesagt, dass man das zeigen kann, aber es nicht gemacht.

Weiter aus der Vorlesung:
Ist zunächst [mm] $\mu$ [/mm] ein positives Borelmaß, [mm] $f:X\to\mathbb{R}_{\ge 0}$ [/mm]
Borelmeßbar, so existiert eine Folge von einfachen Funktionen [mm] $(f_n)$ [/mm] mit [mm] $0\le f_n \le f_{n+1}\;\; \forall n\in\mathbb{N}$ [/mm] mit [mm] $\limes_{n\rightarrow\infty} f_n(x)=f(x)$ [/mm] für jedes [mm] $x\in [/mm] X$. Es folgt, dass [mm] $\limes_{n\rightarrow\infty}\int_Xf_nd\mu \in [0,\infty]$ [/mm] existiert und man definiert
[mm] $\int_Xfd\mu:=\limes_{n\rightarrow\infty}\int_Xf_nd\mu [/mm] $, da man zeigen kann, dass der Grenzwert unabhängig von der gewählten monton wachsenden Folge von Trepenfunktionen [mm] $(f_n)$ [/mm] ist.  

2. Auch hierfür "da man zeigen kann, dass der Grenzwert unabhängig von der gewählten monton wachsenden Folge von Trepenfunktionen [mm] $(f_n)$ [/mm] ist" will ich mir grob anschauen wie das geht.

Zu Punkt 1:
Man nimmt sich 2 Darstellungen von f: [mm] $f=\sum_{k=1}^na_k\chi_{A_i}$ [/mm] und [mm] $f=\sum_{k=1}^mb_k\chi_{B_i}$ [/mm] und es soll gelten [mm] $\int_Xfd\mu=\sum_{k=1}^na_k\mu (A_i)=\sum_{k=1}^mb_k\mu (B_i)$. [/mm]
Also anschaulich wenn ich mir das aufzeichne, ist mir das klar. Kann das ganze nur ein wenig heuristisch erklären wobei ich da schon Schwierigkeiten habe, es ist Worten auszudrücken: Wenn jetzt zb $n>m$ und wenn ich jetzt speziell [mm] $X=[a,b]\subseteq\mathbb{R}$ [/mm] betrachte, hab ich nur noch mehr Zerlegungen [mm] $A_i$ [/mm] als [mm] $B_i$ [/mm]  des Intervalls. Aber insgesamt müssen die beiden Summen übereinstimmen, auch wenn man in der ersten Summe [mm] $f=\sum_{k=1}^na_k\chi_{A_i}$ [/mm] gleich viele oder mehr Summanden als in der 2.Summendarstellung für die einzelnen Teilintervalle benötigt. Wenn man zb das Intervall $[a,b]$ nicht unterteilt und betrachte [mm] $f=b\chi_{[a,b]}$, [/mm] und einmal [mm] $f=a_1\chi_{[a,\frac{a+b}{2}]}+a_2\chi_{[\frac{a+b}{2},b]}$, [/mm] dann ist ja die Länge von $[a,b]$= Länge von$ [mm] [a,\frac{a+b}{2}]$+Länge [/mm] von [mm] $[\frac{a+b}{2},b] [/mm] $ und auch ist anschaulich klar, dass [mm] $a_1$ [/mm] und [mm] $a_2$ [/mm] zusammen $b$ ergeben.
Also das jetzt mal als Spezialfall. Und das Integral ist linear...
Kann mir jemand sagen wie man grob vorgeht wenn man es formal zeigen will bzw wie mand as aufschreibt?

Bei Punkt 2 denke nimmt man sich auch eine weitere nichtnegative, monoton wachsende Folge [mm] $(g_n)$ [/mm] wie [mm] $(f_n)$ [/mm] her die punktweise gegen f konvergiert. Macht man dann eine Mischfolge draus? Oder wie zeigt man grob 2?

Zumindest wäre ich sehr dran interessiert, wie man das ganz grob macht.
Gruß


        
Bezug
Integration bzgl. eines BM: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mi 21.01.2015
Autor: fred97


> Hallo. In meinem Skript steht:
>  Sei X ein metrischer Raum. Für eine Borelmeßbare
> einfache Funktion [mm]f:X\to\mathbb{K}[/mm],
> [mm]f=\sum_{k=1}^na_k\chi_{A_i}[/mm], wobei [mm]a_i\in \mathbb{K}[/mm],
> [mm]A_i\in B_X[/mm] ([mm]B_X[/mm][mm] =Borelsche-\sigma-Algebra[/mm] von X), wird das
> Integral von f bezüglich eines signierten/komplexen Maß
> [mm]\mu:B_X\to \mathbb{K}[/mm] in natürlicher Weise definiert als:
>  [mm]\int_Xfd\mu:=\sum_{k=1}^na_k\mu (A_i)[/mm].  
>
> 1. Ich will wissen wie man zeigt, dass der Wert nicht von
> der Wahl der Darstellung von f abhängt. Wir haben nur
> gesagt, dass man das zeigen kann, aber es nicht gemacht.

Tja, der Beweis hierfür ist nicht einfach. Beweise findest Du in den meisten Büchern zur Maß- und Integrationstheorie.


>  
> Weiter aus der Vorlesung:
>  Ist zunächst [mm]\mu[/mm] ein positives Borelmaß,
> [mm]f:X\to\mathbb{R}_{\ge 0}[/mm]
>  Borelmeßbar, so existiert eine
> Folge von einfachen Funktionen [mm](f_n)[/mm] mit [mm]0\le f_n \le f_{n+1}\;\; \forall n\in\mathbb{N}[/mm]
> mit [mm]\limes_{n\rightarrow\infty} f_n(x)=f(x)[/mm] für jedes [mm]x\in X[/mm].
> Es folgt, dass [mm]\limes_{n\rightarrow\infty}\int_Xf_nd\mu \in [0,\infty][/mm]
> existiert und man definiert
>  [mm]\int_Xfd\mu:=\limes_{n\rightarrow\infty}\int_Xf_nd\mu [/mm], da
> man zeigen kann, dass der Grenzwert unabhängig von der
> gewählten monton wachsenden Folge von Trepenfunktionen
> [mm](f_n)[/mm] ist.  
>
> 2. Auch hierfür "da man zeigen kann, dass der Grenzwert
> unabhängig von der gewählten monton wachsenden Folge von
> Trepenfunktionen [mm](f_n)[/mm] ist" will ich mir grob anschauen wie
> das geht.

Definiere

    [mm] S:=\sup \{\integral_{X}^{}{g d \mu}: 0 \le g \le f; \quad g \quad einfache \quad Treppenfunktion \} [/mm]

Sei nun eine [mm] (f_n) [/mm] eine Folge von einfachen Funktionen  mit $ [mm] 0\le f_n \le f_{n+1}\;\; \forall n\in\mathbb{N} [/mm] $ mit $ [mm] \limes_{n\rightarrow\infty} f_n(x)=f(x) [/mm] $ für jedes $ [mm] x\in [/mm] X $, so zeige:

    [mm] $\limes_{n\rightarrow\infty}\int_Xf_nd\mu [/mm] =S$.

FRED

>  
> Zu Punkt 1:
> Man nimmt sich 2 Darstellungen von f:
> [mm]f=\sum_{k=1}^na_k\chi_{A_i}[/mm] und [mm]f=\sum_{k=1}^mb_k\chi_{B_i}[/mm]
> und es soll gelten [mm]\int_Xfd\mu=\sum_{k=1}^na_k\mu (A_i)=\sum_{k=1}^mb_k\mu (B_i)[/mm].
>  
> Also anschaulich wenn ich mir das aufzeichne, ist mir das
> klar. Kann das ganze nur ein wenig heuristisch erklären
> wobei ich da schon Schwierigkeiten habe, es ist Worten
> auszudrücken: Wenn jetzt zb [mm]n>m[/mm] und wenn ich jetzt
> speziell [mm]X=[a,b]\subseteq\mathbb{R}[/mm] betrachte, hab ich nur
> noch mehr Zerlegungen [mm]A_i[/mm] als [mm]B_i[/mm]  des Intervalls. Aber
> insgesamt müssen die beiden Summen übereinstimmen, auch
> wenn man in der ersten Summe [mm]f=\sum_{k=1}^na_k\chi_{A_i}[/mm]
> gleich viele oder mehr Summanden als in der
> 2.Summendarstellung für die einzelnen Teilintervalle
> benötigt. Wenn man zb das Intervall [mm][a,b][/mm] nicht unterteilt
> und betrachte [mm]f=b\chi_{[a,b]}[/mm], und einmal
> [mm]f=a_1\chi_{[a,\frac{a+b}{2}]}+a_2\chi_{[\frac{a+b}{2},b]}[/mm],
> dann ist ja die Länge von [mm][a,b][/mm]= Länge von[mm] [a,\frac{a+b}{2}][/mm]+Länge
> von [mm][\frac{a+b}{2},b][/mm] und auch ist anschaulich klar, dass
> [mm]a_1[/mm] und [mm]a_2[/mm] zusammen [mm]b[/mm] ergeben.
>  Also das jetzt mal als Spezialfall. Und das Integral ist
> linear...
>  Kann mir jemand sagen wie man grob vorgeht wenn man es
> formal zeigen will bzw wie mand as aufschreibt?
>  
> Bei Punkt 2 denke nimmt man sich auch eine weitere
> nichtnegative, monoton wachsende Folge [mm](g_n)[/mm] wie [mm](f_n)[/mm] her
> die punktweise gegen f konvergiert. Macht man dann eine
> Mischfolge draus? Oder wie zeigt man grob 2?
>  
> Zumindest wäre ich sehr dran interessiert, wie man das
> ganz grob macht.
>  Gruß
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]