matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration coshx
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integration coshx
Integration coshx < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration coshx: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:26 So 11.03.2007
Autor: Raingirl87

Aufgabe
Berechnen Sie das bestimmte Integral
[mm] \integral_{0}^{\infty}{\bruch{1}{coshx + 2} dx} [/mm]

Hallo!
Ich habe nun schon einige Substitutionen für coshx ausprobiert aber komme leider auf keine Lösung. :(
Hab z.B. einfach coshx=t gesetzt aber das bringt nix und dann hab ich x=arccoshx probiert aber das klappt irgendwie auch nicht. :(
Kann mir vielleicht jemand weiterhelfen?
Wär echt super!
Danke!
Lg, Raingirl87


        
Bezug
Integration coshx: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 11.03.2007
Autor: schachuzipus

Hallo Raingilrl, [winken]

das ist ja mal ein Hammerintegral ;-)

Ich hab's mit einiger Mühe und 2 Substitutionen auf die Form [mm] \integral{\bruch{1}{1-z^2}dz} [/mm] gebracht. Und das steht in der Formelsammlung als [mm] \bruch{1}{2}ln\left|\bruch{1+z}{1-z}\right| [/mm]

Also:

[mm] cosh(x)=\bruch{e^x+e^{-x}}{2} \Rightarrow \bruch{1}{cosh(x)+2}=\bruch{2}{e^x+e^{-x}+4} [/mm]

Damit ist [mm] \integral{\bruch{1}{cosh(x)+2}dx}=2\integral{\bruch{1}{e^x+e^{-x}+4}dx} [/mm]

erste Substitution: x:=ln(u) [mm] \Rightarrow \bruch{dx}{du}=\bruch{1}{u} \Rightarrow dx=\bruch{du}{u} [/mm]

Damit ist [mm] 2\integral{\bruch{1}{e^x+e^{-x}+4}dx}=2\integral{\bruch{1}{u+\bruch{1}{u}+4}\bruch{du}{u}}=2\integral{\bruch{udu}{(u^2+4u+1)u}du}=2\integral{\bruch{1}{u^2+4u+1}du} [/mm]

[mm] =2\integral{\bruch{1}{(u+2)^2-3}du}=-2\integral{\bruch{1}{3-(u+2)^2}du}=-2\integral{\bruch{1}{3\left[1-\left(\bruch{u+2}{\wurzel{3}}\right)^2\right]}du} [/mm]

[mm] =-\bruch{2}{3}\integral{\bruch{1}{1-\left(\bruch{u+2}{\wurzel{3}}\right)^2}du} [/mm]

Nun die 2. Substitution: [mm] z:=\bruch{u+2}{\wurzel{3}} \Rightarrow \bruch{dz}{du}=\bruch{1}{\wurzel{3}} \Rightarrow du=\wurzel{3}dz [/mm]

Also [mm] -\bruch{2}{3}\integral{\bruch{1}{1-\left(\bruch{u+2}{\wurzel{3}}\right)^2}du}=-\bruch{2}{3}\integral{\bruch{1}{1-z^2}\wurzel{3}dz}=-\bruch{2}{\wurzel{3}}\integral{\bruch{1}{1-z^2}dz}=-\bruch{2}{\wurzel{3}}\bruch{1}{2}ln\left|\bruch{1+z}{1-z}\right|=-\bruch{1}{\wurzel{3}}ln\left|\bruch{1+z}{1-z}\right| [/mm]

Das Rücksubstituieren überlasse ich dir [aetsch]

Alles ist ohne Gewähr und sieht sehr danach aus, als müsse es eine einfachere Lösung geben.

Vielleicht weiß jemand anderes ja eine ;-)


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]