matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Integration durch Substitution
Integration durch Substitution < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 13.12.2004
Autor: beni

folgendes integral kann man - lt angabe - durch substitution lösen.
[mm] \integral_{}^{} {(1+e^x)^{-1/2} dx} [/mm]

aber was kann man da substituieren?
[mm] e^x [/mm] beibt [mm] e^x [/mm] und lässt sich nicht kürzen, und als innere ableitung bleibt es auch....
danke beni

        
Bezug
Integration durch Substitution: formel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mo 13.12.2004
Autor: beni

das integral ist [mm] \bruch{1}{\wurzel(1+e^x)}; [/mm] anscheinend hat er mir das ^hoch -1/2 nicht genommen.

Bezug
        
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mo 13.12.2004
Autor: Daox

Hi!
Das wird wohlmöglich eine dieser böse Sonderregeln.
Probieren wir's mal mit

[mm] \integral_{}^{} {(ax+b)^{n} dx}= \bruch{(ax+b)^{n+1}}{a(n+1)}+c [/mm]  (n [mm] \not= [/mm] -1)


[mm] \integral_{}^{} {(1+e^{x})^{-\bruch{1}{2}} dx} [/mm] = [mm] \bruch{(1+e^{x})^{\bruch{1}{2}}}{1(\bruch{1}{2})}+c [/mm] = [mm] 2\wurzel{1+e^{x}} [/mm] + c

So ergibt sich F(x)= [mm] 2\wurzel{1+e^{x}} [/mm] + c

Hmm, das Prob ist wohl, dass [mm] e^{x} [/mm] als innere Ableitung bleibt...

Ich denke man braucht dann an dieser Stelle einen Übergang von einer Integrationsvariable zur anderen mit nichtlinearer Substitution.

Bezug
        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Di 14.12.2004
Autor: Sigrid

Hallo beni,

> folgendes integral kann man - lt angabe - durch
> substitution lösen.
> [mm]\integral_{}^{} {(1+e^x)^{-1/2} dx} [/mm]
>  
> aber was kann man da substituieren?
>  [mm]e^x[/mm] beibt [mm]e^x[/mm] und lässt sich nicht kürzen, und als innere
> ableitung bleibt es auch....

Versuch' s mal mit
   [mm] z= \wurzel{e^x + 1} [/mm]
[mm] \Rightarrow e^x = z^2 - 1 [/mm]

Gruß Sigrid

>  danke beni
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]