matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration einer Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration einer Fkt.
Integration einer Fkt. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration einer Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 22.09.2007
Autor: NixwisserXL

Aufgabe
Integrieren Sie

[mm] \integral_{}^{}{\bruch{1}{(\wurzel{x}+a)} dx} [/mm]

Verwenden Sie als Substitution [mm] t=\wurzel{x} [/mm] oder [mm] t=\wurzel{x}+a [/mm]

Hallo,

ich komme bei dieser Aufgabe nicht weiter.
Sobald ich die Ableitung der Substitution gebildet habe, kann ich sie einfach nicht weiter verwenden.

Ich vermute, dass ich den Bruch erweitern muss. Allerdings blieben meine Versuche bisher ohne Erfolg.

Ich würde mich über einen kleinen Hinweis freuen, denn diese Aufgabe lässt mich nicht schlafen.

MfG
NixwisserXL

        
Bezug
Integration einer Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Sa 22.09.2007
Autor: angela.h.b.


> Integrieren Sie
>  
> [mm]\integral_{}^{}{\bruch{1}{(\wurzel{x}+a)} dx}[/mm]
>  
> Verwenden Sie als Substitution [mm]t=\wurzel{x}[/mm] oder
> [mm]t=\wurzel{x}+a[/mm]
>  Hallo,
>  
> ich komme bei dieser Aufgabe nicht weiter.
>  Sobald ich die Ableitung der Substitution gebildet habe,
> kann ich sie einfach nicht weiter verwenden.

Hallo,

zeig mal, was Du gerechnet hast.

Ich kommer per Substitution gut weiter.

Hast Du auch ans dx gedacht?

Danach Polynomdivision o.ä.

Gruß v. Angela

Bezug
                
Bezug
Integration einer Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Sa 22.09.2007
Autor: NixwisserXL

Hallo,

ich habe als Subst. [mm] t=\wurzel{X}+a [/mm] gewählt und die Ableitung [mm] \bruch{dt}{dx}=\bruch{1}{2\wurzel{x}}gebildet. [/mm]

Ab hier stehe ich auf dem Schlauch, da ich diese Ableitung nicht "einbauen" kann.

MfG
NixwisserXL

Bezug
                        
Bezug
Integration einer Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Sa 22.09.2007
Autor: angela.h.b.


> ich habe als Subst. [mm]t=\wurzel{X}+a[/mm] gewählt und die
> Ableitung [mm]\bruch{dt}{dx}=\bruch{1}{2\wurzel{x}}gebildet.[/mm]
>  
> Ab hier stehe ich auf dem Schlauch, da ich diese Ableitung
> nicht "einbauen" kann.


Integrieren wollen wir $ [mm] \integral_{}^{}{\bruch{1}{(\wurzel{x}+a)} dx} [/mm] $.

Du hast Dich für die Substitution [mm] t=\wurzel{x}+a [/mm] entschieden.

Ich zeige Dir jetzt mal, wie ich das mache. Von diesem Ableiten nach x, wie es auch hier im Forum oft propagiert wird, halte ich gar nichts.

[mm] t=\wurzel{x}+a. [/mm]

[mm] x=(t-a)^2 [/mm]

dx=2(t-a)dt      (gewonnen aus [mm] \bruch{dx}{dt}. [/mm]

Nun setze ich ein:

[mm] \integral_{}^{}{\bruch{1}{(\wurzel{x}+a)} dx}=\integral_{}^{}{\bruch{2(t-a)}{t} dx}=... [/mm]

Zupf Dir nun den Bruch auseinander zu einer Summe. Dann kannst Du bequem integrieren.

Zum Schluß rücksubstituieren.

Gruß v. Angela


Bezug
                                
Bezug
Integration einer Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Sa 22.09.2007
Autor: NixwisserXL

Hallo,

vielen Dank für die schnelle Hilfe.
Ich hätte nie im Leben an die Möglichkeit gedacht die nach x umgestellte Subst. abzuleiten, da ich nur immer einem Schema gefolgt bin. Damit habe ich wieder etwas gelernt und bedanke mich nochmals für die schnelle Hilfe.

MfG
NixwisserXL

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]