matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration von 1/(1+x^(1/3))
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integration von 1/(1+x^(1/3))
Integration von 1/(1+x^(1/3)) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von 1/(1+x^(1/3)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 13.02.2007
Autor: nebulo

Aufgabe
Berechnen Sie das Integral [mm] \integral_{0}^{8}{\bruch{1}{1+x^{1/3}} dx} [/mm] mit Hilfe der Substitution x = [mm] t^{3} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich komme irgendwie nicht weiter. Ich bin mir aber auch nicht sicher ob mein Ansatz richtig ist.

ich substituiere x = g(x) = [mm] t^{3} [/mm] => g'(x) = [mm] 3t^{3} [/mm]
habe also

[mm] \integral_{0}^{2}{\bruch{1}{1+t}*3*t^{2} dt} [/mm]

Irgendwie bringt mich das jetzt nicht weiter...
Ist mein Ansatz überhaupt richtig. Ich bin nicht sicher ob ich diese Art der Integration durch substitution überhaupt richtig verstanden habe.

        
Bezug
Integration von 1/(1+x^(1/3)): Bruch zerlegen
Status: (Antwort) fertig Status 
Datum: 16:10 Di 13.02.2007
Autor: Roadrunner

Hallo nebulo!


Dein Ansatz ist schon sehr gut! [daumenhoch]


Du musst nun den Bruch zerlegen:

[mm] $\integral_{0}^{2}{\bruch{3*t^2}{1+t} \ dt} [/mm] \ = \ [mm] 3*\integral_{0}^{2}{\bruch{t^2\red{-1+1}}{1+t} \ dt} [/mm] \ = \ [mm] 3*\integral_{0}^{2}{\bruch{t^2-1}{1+t}+\bruch{1}{1+t} \ dt} [/mm] \ = \ [mm] 3*\integral_{0}^{2}{\bruch{(t+1)*(t-1)}{1+t}+\bruch{1}{1+t} \ dt} [/mm] \ = \ ...$


Kommst Du nun alleine weiter?


Gruß vom
Roadrunner


Bezug
                
Bezug
Integration von 1/(1+x^(1/3)): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Di 13.02.2007
Autor: nebulo

Ja klar! Vielen Dank - stand irgendwie auf der Leitung! Falls noch jemand Anderes die Lösung sucht:  
1. Zerlegen mit Polynomdivision
2. Jeden Summanden einzeln intergrieren

Ergebnis: 3*ln(3)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]