matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration von 2 Fkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Integration von 2 Fkt
Integration von 2 Fkt < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von 2 Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 So 29.06.2008
Autor: Audience

Aufgabe
Bestimmen Sie die folgenden (unbestimmten) Integrale:
a) [mm] \integral_{}^{}{\bruch{x-1}{x^{2}+x+1} dx} [/mm]

b) [mm] \integral_{}^{}{\bruch{1-cos(x)}{x^{\alpha}} dx} [/mm] , [mm] \alpha \in \IR [/mm]

Hallo,

ich hänge irgendwie bei den Aufgaben fest. Bei der ersten weiß ich dass irgendwas mit arctanx rauskommen sollte.. aber wie?

Die b) kann ich irgendwie nicht explizit lösen? Geht da nur die Potenzreihendarstellung?

Danke für eure Tipps,
Gruß
Thomas

        
Bezug
Integration von 2 Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 So 29.06.2008
Autor: koepper

Hallo,

> Bestimmen Sie die folgenden (unbestimmten) Integrale:
>  a) [mm]\integral_{}^{}{\bruch{x-1}{x^{2}+x+1} dx}[/mm]

[mm] $\frac{x-1}{x^2+x+1} [/mm] = [mm] \frac{x + 0.5}{x^2 + x + 1} [/mm] + [mm] \frac{-1.5}{(x + 0.5)^2 + \frac{3}{4}} [/mm] =  [mm] \frac{x + 0.5}{x^2 + x + 1} [/mm] + [mm] \frac{-1.5}{\frac{3}{4}\left[\left(\sqrt{\frac{4}{3}}x + \sqrt{\frac{4}{3}}* 0.5\right)^2 + 1\right]} [/mm] $

Im linken Bruch kann jetzt der gesamte Nenner substituiert werden, im rechten Bruch $z = [mm] \sqrt{\frac{4}{3}}x [/mm] + [mm] \sqrt{\frac{4}{3}}* [/mm] 0.5 =  [mm] \frac{2}{3}\sqrt{3} [/mm] x + [mm] \frac{1}{3}\sqrt{3}$. [/mm]

LG
Will

Bezug
        
Bezug
Integration von 2 Fkt: Aufgabe b)
Status: (Antwort) fertig Status 
Datum: 16:48 So 29.06.2008
Autor: MathePower

Hallo Audience,

> b) [mm]\integral_{}^{}{\bruch{1-cos(x)}{x^{\alpha}} dx}[/mm] ,
> [mm]\alpha \in \IR[/mm]

>  Hallo,
>  

>  
> Die b) kann ich irgendwie nicht explizit lösen? Geht da nur
> die Potenzreihendarstellung?

Die Tatsache, daß [mm]\alpha \in \IR[/mm] ist läßt nur die Potenzreihendarstellung zu.

Setze also statt [mm]1-\cos\left(x\right)[/mm] deren Potenzreihe ein.


>  
> Danke für eure Tipps,
>  Gruß
>  Thomas


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]