matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration von e^(sin(x))
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integration von e^(sin(x))
Integration von e^(sin(x)) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von e^(sin(x)): überhaupt möglich?
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 12.12.2006
Autor: outkast

Hallo, ich bin gerade bei Integralen und stehe vor einem Problem.
[mm] \integral{e^{\sin(x)} dx} [/mm] wenn ich hier das Substituieren nehme und u=sin(x) stetze dann ist [mm] \bruch{du}{dx}=\cos(x) [/mm] nach [mm] dx=\bruch{du}{\cos(x)} [/mm] beim eingesetzten Integral erhalte ich dann [mm] \integral{\bruch{1}{\cos(x)} e^{u} du} [/mm] darf ich dann [mm] \bruch{1}{\cos(x)} [/mm] vor das Integral ziehen?
Da es ja jetzt einfach als Konstante gesehen wird erhalte ich [mm] \bruch{1}{\cos(x)} \integral{ e^{u} du} [/mm] = [mm] \bruch{1}{\cos(x)}*e^{u} [/mm]
Rücksubstituiert erhalte ich dann [mm] \bruch{1}{\cos(x)}*e^{\sin(x)}*\cos(x)=e^{\sin(x)} [/mm]
aber das ergibt beim Differenzieren doch kein [mm] e^{\sin(x)}. [/mm]

Ich versteh einfach nicht wo mein Denkfehler ist.

        
Bezug
Integration von e^(sin(x)): Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Di 12.12.2006
Autor: leduart

Hallo
> Hallo, ich bin gerade bei Integralen und stehe vor einem
> Problem.
>  [mm]\integral{e^{\sin(x)} dx}[/mm] wenn ich hier das Substituieren
> nehme und u=sin(x) stetze dann ist [mm]\bruch{du}{dx}=\cos(x)[/mm]
> nach [mm]dx=\bruch{du}{\cos(x)}[/mm] beim eingesetzten Integral
> erhalte ich dann [mm]\integral{\bruch{1}{\cos(x)} e^{u} du}[/mm]
> darf ich dann [mm]\bruch{1}{\cos(x)}[/mm] vor das Integral ziehen?

GANZ SICHER NICHT!

> Da es ja jetzt einfach als Konstante gesehen wird erhalte

wieso sollte [mm] cosx=\wurzel{1-sin^2x}=\wurzel{1-u^2} [/mm] eine Konstante sein?
ob das Integral allerdings so zu lösen ist hab ich nicht überprüft.

> ich [mm]\bruch{1}{\cos(x)} \integral{ e^{u} du}[/mm] =
> [mm]\bruch{1}{\cos(x)}*e^{u}[/mm]
>  Rücksubstituiert erhalte ich dann
> [mm]\bruch{1}{\cos(x)}*e^{\sin(x)}*\cos(x)=e^{\sin(x)}[/mm]
>  aber das ergibt beim Differenzieren doch kein
> [mm]e^{\sin(x)}.[/mm]
>  
> Ich versteh einfach nicht wo mein Denkfehler ist.  

versuch mal [mm] x^2 [/mm] nach deiner Methode zu integrieren mit [mm] u=x^2 [/mm] dann siehst du deinen Fehler schneller!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]