matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenIntegration von trig.-Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrieren und Differenzieren" - Integration von trig.-Fkt.
Integration von trig.-Fkt. < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von trig.-Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mo 31.08.2015
Autor: Fl4shM4k3r

Aufgabe
[mm] \integral{sin^{-3}(x)*cos(x)}dx [/mm]

Hallo,
im Prinzip kann ich integrieren, also so einiger maßen. Nur diese trigonometrischen Funktionen fallen mir sehr schwer. Wie ich sinus und cosinus integriere ist mir schon klar, nur habe ich Probleme sobald diese in Kombination oder mit Exponenten usw auftauchen.
Habt ihr da ein paar Grundsätze nach denen ihr bei sowas handelt oder wie kommt ihr damit klar?
Als Beispiel mal die oben angegebene Aufgabe bei der ich so garnicht weiß womit ich anfangen soll.

Ich hoffe man versteht wo mein Problem liegt. Ich brauche keine vollständige Lösung der Aufgabe, ich möchte trigonometrische Funktionen integrieren können.

        
Bezug
Integration von trig.-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 31.08.2015
Autor: rmix22


> [mm]\integral{sin^{-3}(x)*cos(x)}dx[/mm]

Der Integrand ist also [mm] $\left({sin\ x}\right)^{-3}*cos [/mm] x$.
Was dir dabei auffallen könnte/sollte ist, dass du eine verkettete Funktion da stehen hast, die äußere Funktion ist die Potenzfunktion [mm] $(\cdots)^{-3}$ [/mm] und die innere Funktion ist [mm]sin(x) [/mm]. Und so "zufälligerweise" steht die Ableitung der inneren Funktion als Faktor dahinter. Das sollte stark an die Kettenregel beim Differenzieren erinnern und man sieht rasch, dass hier das Ergebnis der Ableitung von [mm] $-\frac{1} [/mm] 2 * (sin\ [mm] x)^{-2}$ [/mm] da steht.

Allgemein gilt: [mm] $\int{f(g(x))*g'(x)}dx=F(g(x))+C$ [/mm]
Kurz, es muss nur die äußere Funktion f integriert werden (->F). Bei dir reicht es daher,  [mm] $(\cdots)^{-3}$ [/mm] zu integrieren, also
     [mm] $\integral{sin^{-3}(x)*cos(x)}dx=-\frac [/mm] 1 2 [mm] *sin^{-2}(x)+C$ [/mm]


Etwas aufwändiger kommst du im Falle derartiger Integrale natürlich auch zur Lösung, indem du $u=g(x)$ substituierst.
Im Falle deiner Aufgabe führt das auf [mm] $\int u^{-3}du$. [/mm]

Ich finde es allerdings wesentlich bequemer, sich die Regel allgemein zu merken und direkt anzuwenden.

RMix






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]