matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integrieren
Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Sa 12.09.2009
Autor: Dinker

Guten Nachmittag

Ich zeige euch einen falschen Lösungsweg, da dies überhaupt nicht mit dem Ergebnis korrespondiert...

[mm] \integral \wurzel{1 - x^{2}} [/mm] dx

u = 1 - [mm] x^{2} [/mm]
= [mm] \integral u^{0.5} [/mm] = [mm] \bruch{2}{3}* u^{1.5} [/mm]
=
[mm] \bruch{2}{3}* [/mm] (1 [mm] -x^{2})^{1.5} [/mm] + C

Warum darf ich das nicht so lösen?

Danke
Gruss Dinker






        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Sa 12.09.2009
Autor: schachuzipus

Hallo Dinker,

> Guten Nachmittag
>  
> Ich zeige euch einen falschen Lösungsweg, da dies
> überhaupt nicht mit dem Ergebnis korrespondiert...
>  
> [mm]\integral \wurzel{1 - x^{2}}[/mm] dx
>  
> u = 1 - [mm]x^{2}[/mm]
>  = [mm]\integral u^{0.5}[/mm][notok] = [mm]\bruch{2}{3}* u^{1.5}[/mm]
>  =
> [mm]\bruch{2}{3}*[/mm] (1 [mm]-x^{2})^{1.5}[/mm] + C
>  
> Warum darf ich das nicht so lösen?

Weil du ja auch das Differential dx aus dem Ausgangsintegral mitsubstituieren musst.

Es ist ja [mm] $\int{\sqrt{1-x^2} \ \red{dx}}$ [/mm] gesucht.

Mit der Substitution [mm] $u=u(x)=1-x^2$ [/mm] ist [mm] $u'(x)=\frac{du}{dx}=-2x$, [/mm] also [mm] $\red{dx=-\frac{du}{2x}}$ [/mm]

Damit und mit [mm] $u=1-x^2\Rightarrow x=\sqrt{1-u}$ [/mm] bekämest du das substituierte Integral [mm] $\int{u^{\frac{1}{2}} \ \frac{-du}{2(1-u)^{\frac{1}{2}}}}=-\frac{1}{2}\int{\frac{u^{\frac{1}{2}}}{(1-u)^{\frac{1}{2}}} \ du}$ [/mm]

Also ist es so nur schlimmer geworden ..

Besser ist hier die Substitution [mm] $x:=\sin(u)$, [/mm] damit ist [mm] $\frac{dx}{du}=\cos(u)$, [/mm] also $dx=...$ und damit ...

> Danke
>  Gruss Dinker
>  

LG

schachuzipus


Bezug
                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Sa 12.09.2009
Autor: Dinker

Hallo

Danke für die Antwort.

Ich kann es leider noch nicht nachvollziehen, wieso man sin (x) substituiert. Denn dieser Term sehe ich nirgends in der Rechnung...

Danke
Gruss Dinker

Bezug
                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Sa 12.09.2009
Autor: fencheltee


> Hallo
>  
> Danke für die Antwort.
>  
> Ich kann es leider noch nicht nachvollziehen, wieso man sin
> (x) substituiert. Denn dieser Term sehe ich nirgends in der
> Rechnung...
>  
> Danke
>  Gruss Dinker

egal was man versucht zu substituieren, es lässt sich nicht schön und komplett in ein einfaches integral umwandeln.. wenn man sich aber den "definitionsbereich" anschaut [mm] (1-x^2\ge0) [/mm] sieht man ja, dass das integral nur für x [mm] \in [/mm] [-1;1] definiert ist, was dem wertebereich von sin und cos entspricht. zusätzlich sorgt der trigonometrische pythagoras für eine schöne "auflösung". ist also quasi ein gängiges integral, was du in der trickkiste behalten wirst

Bezug
                                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Sa 12.09.2009
Autor: Dinker

Hallo

Ich komme nicht weiter....


Haben wir jetzt x durch sin (x) ersetzt oder was?

Bezug
                                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Sa 12.09.2009
Autor: schachuzipus

Hallo Dinker,

> Hallo
>  
> Ich komme nicht weiter....
>  
>
> Haben wir jetzt x durch sin (x) ersetzt oder was?

Nein, durch [mm] $\sin(\red{u})$, [/mm] das steht doch oben in meiner Antwort.

Außerdem ist mit [mm] $\blue{x}=x(u)\blue{=\sin(u)}$ [/mm] dann [mm] $\frac{dx}{du}=\cos(u)$, [/mm] also [mm] $\red{dx=\cos(u) \ du}$ [/mm]

Damit ergibt sich [mm] $\int{\sqrt{1-\blue{x}^2} \ \red{dx}}=\int{\sqrt{1-\left(\blue{\sin(u)}\right)^2} \ \red{\cos(u) \ du}}$ [/mm]

[mm] $=\int{\sqrt{\cos^2(u)} \ cos(u) \ du} [/mm] \ \ \ $ denn [mm] $\sin^2(u)+\cos^2(u)=1$, [/mm] also [mm] $\cos^2(u)=1-\sin^2(u)$ [/mm]

[mm] $=\int{\cos^2(u) \ du}$ [/mm]

Und das kannst du nun mit partieller Integration oder mit geeigneter Anwendung der Additionstheoreme weiter verarzten

Gruß

schachuzipus

Bezug
                                                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 12.09.2009
Autor: Dinker


> Hallo Dinker,
>  
> > Hallo
>  >  
> > Ich komme nicht weiter....
>  >  
> >
> > Haben wir jetzt x durch sin (x) ersetzt oder was?
>
> Nein, durch [mm]\sin(\red{u})[/mm], das steht doch oben in meiner
> Antwort.
>  
> Außerdem ist mit [mm]\blue{x}=x(u)\blue{=\sin(u)}[/mm] dann
> [mm]\frac{dx}{du}=\cos(u)[/mm], also [mm]\red{dx=\cos(u) \ du}[/mm]
>  
> Damit ergibt sich [mm]\int{\sqrt{1-\blue{x}^2} \ \red{dx}}=\int{\sqrt{1-\left(\blue{\sin(u)}\right)^2} \ \red{\cos(u) \ du}}[/mm]

Das geht doch gerade andersrum: [mm] \bruch{d u}{dx} [/mm] ?

>  
> [mm]=\int{\sqrt{\cos^2(u)} \ cos(u) \ du} \ \ \[/mm] denn
> [mm]\sin^2(u)+\cos^2(u)=1[/mm], also [mm]\cos^2(u)=1-\sin^2(u)[/mm]
>  
> [mm]=\int{\cos^2(u) \ du}[/mm]
>  
> Und das kannst du nun mit partieller Integration oder mit
> geeigneter Anwendung der Additionstheoreme weiter
> verarzten
>  
> Gruß
>  
> schachuzipus


Bezug
                                                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Sa 12.09.2009
Autor: Al-Chwarizmi

Falls du [mm] \frac{du}{dx} [/mm] möchtest, wäre dies der Kehrwert von [mm] \frac{dx}{du} [/mm] , also  [mm] \frac{1}{cos(u)} [/mm]

Bezug
                                                                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Sa 12.09.2009
Autor: Dinker

Hallo

Ich stehe gerade völlig neben den Schuhen.

Aber wieso machen wir plötzlich etwas anderes als bisher? Also umgekehrt?

Danke
Gruss Dinker

Bezug
                                                                        
Bezug
Integrieren: andere Substitution
Status: (Antwort) fertig Status 
Datum: 17:31 Sa 12.09.2009
Autor: Loddar

Hallo Dinker!


Bisher hast Du immer substituiert [mm] $\blue{u} [/mm] \ := \ [mm] f(\red{x})$ [/mm] .

Nun machen wir dies hier genau umgekehrt mit [mm] $\red{x} [/mm] \ := \ [mm] f(\blue{u})$ [/mm] .

Damit ist dann natürlich auch die Ableitung bzw. der Differentialquotient genau umgedreht.


Gruß
Loddar


Bezug
                                                                                
Bezug
Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Sa 12.09.2009
Autor: Dinker

Hallo Loddar

Danke für deine Hilfestellung

Gruss Dinker

Bezug
                                                
Bezug
Integrieren: Vorsicht mit Vorzeichen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Sa 12.09.2009
Autor: Al-Chwarizmi


> Außerdem ist mit [mm]\blue{x}=x(u)\blue{=\sin(u)}[/mm] dann
> [mm]\frac{dx}{du}=\cos(u)[/mm], also [mm]\red{dx=\cos(u) \ du}[/mm]
>  
> Damit ergibt sich [mm]\int{\sqrt{1-\blue{x}^2} \ \red{dx}}=\int{\sqrt{1-\left(\blue{\sin(u)}\right)^2} \ \red{\cos(u) \ du}}[/mm]
>  
> [mm]=\int{\sqrt{\cos^2(u)} \ cos(u) \ du} \ \ \[/mm] denn
> [mm]\sin^2(u)+\cos^2(u)=1[/mm], also [mm]\cos^2(u)=1-\sin^2(u)[/mm]
>  
> [mm]=\int{\cos^2(u) \ du}[/mm]




Hallo,

beim allerletzten obigen Schritt ist etwas Vorsicht
geboten, denn die Gleichung [mm] \sqrt{cos^2(u)}=cos(u) [/mm] gilt
nur, falls [mm] cos(u)\ge{0} [/mm] !

LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]