matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrieren Sie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integrieren Sie
Integrieren Sie < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren Sie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mi 22.08.2007
Autor: Maraike89

Aufgabe
Integrieren Sie:

[mm] \integral_{(3x+1)dx} [/mm]

Hi!

Was ist damit genau gemeint?

=[ [mm] \bruch{3}{2}x²+1x [/mm] ] ?

        
Bezug
Integrieren Sie: Seh ich so:
Status: (Antwort) fertig Status 
Datum: 13:33 Mi 22.08.2007
Autor: statler

Mahlzeit Mareike!

> Integrieren Sie:
>  
> [mm]\integral_{(3x+1)dx}[/mm]

So ist das bestimmt falsch eingegeben. Es soll hoffentlich
[mm] \integral_{}^{}{(3x+1)dx} [/mm]
heißen.

> Was ist damit genau gemeint?

Und dann ist wohl gemeint, eine Stammfunktion zu finden.

> =[ [mm]\bruch{3}{2}x²+1x[/mm] ] ?

Fast!
[mm]\bruch{3}{2}[/mm]x²+1x+c mit einer beliebigen Konstanten c
(würd ich sagen)

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Integrieren Sie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 22.08.2007
Autor: Maraike89

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Integrieren Sie
a) Integrieren Sie $ \integral_{}^{}{(x²-2x-5)dx} $
b) Integrieren Sie $ \integral_{}^{}{(2x^4-x^3+2x²-0,5x+5)dx} $
c) Integrieren Sie $ \integral_{}^{}{(\bruch{4}{x²})dx} $
d) Integrieren Sie $ \integral_{}^{}{(\bruch{x²-4}{x²})dx} $
e) Integrieren Sie $ \integral_{}^{}{(\bruch{(x²+1)²}{2x^3})dx} $

Danke!

a) [\bruch{1}{3} x^3 - x²-5x+c]
b) [\bruch{2}{5} x^5 - \bruch{1}{4}x^4 +\bruch{2}{3}x^3+\bruch{2}{5}x²+5x+c]
c) [-4x^(-1)+c]
d) [4x^(-1)+1x+c]
e) $ \integral_{}^{}{(\bruch{(0,5x+1x^(-1)+0,5x^(-3))dx} $
= [0,25 x²+0-0,25x^(-2)+c]

Bezug
                        
Bezug
Integrieren Sie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mi 22.08.2007
Autor: Bastiane

Hallo Maraike89!

> Integrieren Sie
>  a) Integrieren Sie [mm]\integral_{}^{}{(x²-2x-5)dx}[/mm]
>  b) Integrieren Sie
> [mm]\integral_{}^{}{(2x^4-x^3+2x²-0,5x+5)dx}[/mm]
>  c) Integrieren Sie [mm]\integral_{}^{}{(\bruch{4}{x²})dx}[/mm]
>  d) Integrieren Sie [mm]\integral_{}^{}{(\bruch{x²-4}{x²})dx}[/mm]
>  e) Integrieren Sie
> [mm]\integral_{}^{}{(\bruch{(x²+1)²}{2x^3})dx}[/mm]
>  Danke!
>  
> a) [mm][\bruch{1}{3} x^3[/mm] - x²-5x+c]

[daumenhoch]

>  b) [mm][\bruch{2}{5} x^5[/mm] - [mm]\bruch{1}{4}x^4 +\bruch{2}{3}x^3+\bruch{2}{5}x²+5x+c][/mm]

[notok] die [mm] \frac{2}{5} [/mm] stimmen nicht - wie kommst du denn darauf? Es gilt doch [mm] 0,5=\frac{1}{2}=\frac{5}{10}... [/mm]
  

> c) [-4x^(-1)+c]

[daumenhoch]

>  d) [4x^(-1)+1x+c]

[notok] Hier musst du zuerst den Bruch aufteilen: [mm] \frac{x^2-4}{x^2}=\frac{x^2}{x^2}-\frac{4}{x^2}=1-\frac{4}{x^2} [/mm]

>  e) [mm]\integral_{}^{}{(\bruch{(0,5x+1x^(-1)+0,5x^(-3))dx}[/mm]
>  = [0,25 x²+0-0,25x^(-2)+c]

[notok] Hier musst du ähnlich wie bei d) den Bruch erstmal aufteilen.

Du musst aufpassen, wenn du Brüche hast, dann ist das Integrieren meist nicht so einfach!

Übrigens kannst du alles selbst kontrollieren, indem du deine Lösung einfach ableitest, und wenn dann die Ursprungsfunktion rauskommt, ist es richtig. :-)

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Integrieren Sie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Mi 22.08.2007
Autor: Maraike89

Danke
zu b) wenn ich die Formel

[mm] f(x)=x^z F(x)=\bruch{1}{z+1} [/mm] x^(z+1) verwende kommt da bei mir

[mm] F(x)=\bruch{1}{4+1} [/mm] 2^(4+1) = $ [mm] [\bruch{2}{5} x^5 [/mm] $

zu d)

$ [mm] \frac{x^2-4}{x^2}=\frac{x^2}{x^2}-\frac{4}{x^2}=1-\frac{4}{x^2} [/mm] $ =

[-4x^(-1)+1x+c]  oder ?


Bezug
                                        
Bezug
Integrieren Sie: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Mi 22.08.2007
Autor: Steffi21

Hallo

zu b) [mm] \bruch{2}{5}x^{5} [/mm] sieht gut aus, bedenke aber es fehlen noch die anderen Terme bei der Aufgabe

zuc) 1x+c sieht wieder gut aus, willst Du [mm] -\bruch{4}{x^{2}} [/mm] intgrieren, so hast Du ein Vorzeichenfehler, schreibe [mm] -4x^{-2} [/mm] jetzt integrieren [mm] \bruch{-4}{-1}x^{-1} [/mm] ergibt [mm] 4x^{-1} [/mm] die -1 unterm Bruchstrich kommt vom neuen Exponenten, bzw. [mm] \bruch{4}{x}, [/mm] erkennst du jetzt Deinen Vorzeichenfehler, jetzt schaffst Du es,

Steffi

Bezug
                        
Bezug
Integrieren Sie: zu Aufgabe e.)
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 22.08.2007
Autor: Roadrunner

Hallo Maraike!


Die Aufgabe e.) hast Du fast richtig gelöst.

Allerdings musst Du beachten, dass die MBPotenzregel mit [mm] $\integral{x^n \ dx} [/mm] \ = \ [mm] \bruch{x^{n+1}}{n+1}+c$ [/mm] nur für [mm] $\red{x \ \not= \ -1}$ [/mm] gilt.

Für $x \ = \ -1$ gilt folgende Integrazionsregel: [mm] $\integral{x^{-1} \ dx} [/mm] \ = \ [mm] \integral{\bruch{1}{x} \ dx} [/mm] \ = \ [mm] \ln|x|+c$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]