matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrieren durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integrieren durch Substitution
Integrieren durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren durch Substitution: Integration falsch?
Status: (Frage) beantwortet Status 
Datum: 10:17 Fr 21.07.2006
Autor: chriskde

Aufgabe
Berechnen sie die Verteilungsfunktion F(x) von


[mm] f(x)=\left\{\begin{matrix} 5*(1-x)^4, & \mbox{für }0<=x<1\mbox{ } \\ 0 & \mbox{sonst } \mbox{} \end{matrix}\right. [/mm]


Guten Morgen erstmal! :)

Also, durch Integration durch Substitution bin ich auf die Stammfunktion
F(x) = [mm] -1(1-x)^5 [/mm]

gekommen.

Die Lösung ist aber:

F(x) = [mm] 1-(1-x)^5 [/mm]

Wenn ich meine Lösung aber ableite komme ich wieder genau auf f(x).
Wo liegt mein Fehler? Hat das mit der Abschnittsweise definierten Funktion zu tun? Wenn ja, wäre ich froh über eine Erläuterung

        
Bezug
Integrieren durch Substitution: Integrationskonstante!
Status: (Antwort) fertig Status 
Datum: 10:29 Fr 21.07.2006
Autor: Roadrunner

Hallo chriskde!


Deine Stammfunktion ist auch fast richtig! Allerdings unterschlägst Du hier noch die Integrationskonstante $+ \ C$ (sehr "beliebter" Fehler ;-) ):

$F(x) \ = \ [mm] (-1)*(1-x)^5 [/mm] \ [mm] \red{+ \ C} [/mm] \ = \ [mm] -(1-x)^5+C$ [/mm]

Den Wert von $C_$ musst Du nun aus den Randbedingungen Deiner Verteilungsfunktion ermitteln.


Gruß vom
Roadrunner


Bezug
                
Bezug
Integrieren durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Fr 21.07.2006
Autor: chriskde

Ich bin mit diesen verzweigten Funktionen einfach nicht so fit. Kannst du mir vielleicht einen kleinen Denkanstoß geben, der mir allgemein bei solchen Aufgaben hilft?


Bezug
                        
Bezug
Integrieren durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 21.07.2006
Autor: Event_Horizon

Nun, bei diesen verzweigten Funktionen mußt du jeden Zweig einzeln integrieren

Außerhalb von [0;1] ist f(x)=0, daher ist dort auch F(x)=0. Die Stammfunktion für innerhalb kennst du ja.

Nun sollte eine Stammfunktion stetig sein, sprich du solltest sie zeichnen können, ohne den Stift absetzen zu müssen.

Stetig heißt in dem Falle, daß bei x=1 und x=0, also an den Übergängen, sich die Funktionen von außerhalb und innerhalb auch berühren. In deinem Fall muß also gelten : F(1)=0 sowie F(0)=0

Wie oben schon gesagt, mußt du die Konstante nun so bestimmten, daß das paßt, und das ist für C=1 so.


Um dich komplett zuverwirren: Eigentlich hat jede Stammfunktion so eine Konstante dran. Du kannst willkürlich eine einzelne Konstante 0 setzen (wurde hier für den Außenbereich gemacht) und daraus alle anderen Konstanten bestimmen. Eine andere Stammfunktion wäre z.B.:

[mm] f(x)=\begin{cases} -(1-x)^5, & \mbox{für } 0\le x <1 \\ -1, & \mbox{sonst } \end{cases} [/mm]

Hier habe ich einfach die Konstante von dem inneren Teil auf 0 gesetzt, weshalb die Konstanten außen -1 sein müssen.


Nochmal: Durch die Konstanten kannst du die Grafen einzelnen Teilstücke der Stammfunktion hoch und runter schieben. Wo genau sie sich befinden, ist egal, hauptsache, die Grafen berühren sich an den Übergängen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]