matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrieren mit PartIntegratio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integrieren mit PartIntegratio
Integrieren mit PartIntegratio < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren mit PartIntegratio: Idee
Status: (Frage) beantwortet Status 
Datum: 12:36 Mo 04.04.2016
Autor: wolfgangmax

Aufgabe
[mm] \int_{a}^{b}{f(x) dx} \ fuer \ f(x)= x^2*(2x-5)^4[/mm]
 



<br>Der Lehrerhinweis lautete: Die Stammfunktion kann mit 2maliger Partiellen Integration erstellt werden.
Aus meiner Sicht muss aber die Substitution angewandt werden.

Mein Lösungsversuch:

z=2x-5    z'= 2 dz/dx = 2   dx=dz/2
Integral [mm] x^2 z^4 [/mm] dx
x ersetze ich durch z: z=2x-5  x= z/2+5/2
0,5 Integral (z/2 [mm] +5/2)^2 z^4 [/mm] dz

Ist dieser Lösungsansatz zielführend?

Danke für Ihre Antwort

        
Bezug
Integrieren mit PartIntegratio: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Mo 04.04.2016
Autor: fred97


> <br>[mm] \int_{a}^{b}{f(x) dx} fuer f(x)= x^2(2x-5)^4[/mm]
>   
>  
> <br>Der Lehrerhinweis lautete: Die Stammfunktion kann mit
> 2maliger Partiellen Integration erstellt werden.
>  Aus meiner Sicht muss aber die Substitution angewandt
> werden.

Wieso "muss" ????


>  
> Mein Lösungsversuch:
>  
> z=2x-5    z'= 2 dz/dx = 2   dx=dz/2
>  Integral [mm]x^2 z^4[/mm] dx
>  x ersetze ich durch z: z=2x-5  x= z/2+5/2
>  0,5 Integral (z/2 [mm]+5/2)^2 z^4[/mm] dz
>  
> Ist dieser Lösungsansatz zielführend?


Na ja, das Integral, welches Du nun bekommen hast, ist doch komplizierter als das ursprüngliche ......


FRED

>  
> Danke für Ihre Antwort


Bezug
                
Bezug
Integrieren mit PartIntegratio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Di 26.04.2016
Autor: wolfgangmax

Hallo Fred!

Über Ihre Antwort bin ich sehr enttäuscht: keine Spur von Hilfe Ihrerseits, die Kürze Ihrer Antwort grenzt an Arroganz!!!

Schade, war bisher mit dem "matheraum" immer sehr zufrieden

Mit freundlichen Grüßen
Wolfgangmax

Bezug
                        
Bezug
Integrieren mit PartIntegratio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Di 26.04.2016
Autor: fred97


> Hallo Fred!
>  
> Über Ihre Antwort bin ich sehr enttäuscht: keine Spur von
> Hilfe Ihrerseits, die Kürze Ihrer Antwort grenzt an
> Arroganz!!!

Gehts noch ???

1. dem Lehrerhinweis bist Du nicht gefolgt, sondern warst der Meinung, dass man substituieren muss.

2. ich hab Dich darauf hingewiesen, dass von "müssen" nicht die Rede ist und das Deine Vorgehensweise nicht zielführend ist, denn aus der Aufgabe

   "integriere das Produkt p(x)q(x), wobei p ein Polynom vom Grad 2 und q ein Polynom vom Grad 4 ist"

machst Du:

    "integriere das Produkt r(x)s(x), wobei r ein Polynom vom Grad 2 und s ein Polynom vom Grad 4 ist".

Was soll damit gewonnen sein ?

Fazit: der arrogante Fred hat dem lieben Wolfgang gesagt, dass seine Vorgehensweise nicht zielführend ist. Fred, der Arsch, sagt dem tollen Wolfgang damit: folge dem Lehrerhinweis (und hat dem Wolfi damit keine Spur geholfen). Man glaubt es nicht !

Ich habe fertig

Fred

>  
> Schade, war bisher mit dem "matheraum" immer sehr
> zufrieden
>  
> Mit freundlichen Grüßen
>  Wolfgangmax


Bezug
        
Bezug
Integrieren mit PartIntegratio: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 26.04.2016
Autor: Thomas_Aut

Hallo,

Wie Fred (dessen Arbeit hier im Forum wirklich höchst zu schätzen ist) bereits gesagt hat , ist es sinnfrei, dass du substituierst ... du kannst es tun und nochmals tun - bringen tut es nix.

Verfahre wie vorgeschlagen (oder du machst es ganz primitiv und multiplizierst einfach [mm] $x^2(2x-5)^4$ [/mm] aus - denn dann hast du kein Produkt mehr und musst eben nicht partiell integrieren)

Tust du dies nicht, so hast du ein Integral der gestalt [mm] $\int_{a}^{b}f(x)g(x)dx$ [/mm] mit [mm] f(x)=x^2 [/mm] und [mm] g(x)=(2x-5)^4 [/mm]

Zur Erinnerung : es gilt :



[mm] $\int_{a}^{b}f'(x)g(x)dx [/mm] = [mm] [f(x)g(x)]_{a}^{b}$ [/mm] - [mm] \int_{a}^{b}f(x)g'(x)dx$ [/mm]

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]