Intervall < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:52 Mo 03.03.2008 | Autor: | manolya |
Aufgabe | Gesucht ist die Stelle x im Intervall [ 4 [mm] \pi [/mm] ;4,5 [mm] \pi [/mm] ],für die glt :
sin x =0,6. |
Tagchen,
also mir fehlt der Ansatz,wie ich dass machen muss!
Würde mich auf Eure HIlfe freuen.
Danke um Voraus.
Lg
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]
oder
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:37 Mo 03.03.2008 | Autor: | Marcel |
Hallo,
> Gesucht ist die Stelle x im Intervall [ 4 [mm]\pi[/mm] ;4,5 [mm]\pi[/mm]
> ],für die glt :
> sin x =0,6.
> Tagchen,
>
> also mir fehlt der Ansatz,wie ich dass machen muss!
> Würde mich auf Eure HIlfe freuen.
zunächst mal ein wenig zur "Geometrie":
Es gilt [mm] $\sin^2(x)+\cos^2(x)=1$, [/mm] d.h. [mm] $0,6^2+\cos^2(x)=1$. [/mm] Wenn man also ein rechtwinkliges Dreieck mit einer Seitenlänge $0,6$ hat und die Hypothenuse die Länge $1$, dann hat die andere Seite die Länge [mm] $\sqrt{1-0,36}=0,8$.
[/mm]
Mit anderen Worten:
Zeichne mal ein Dreieck mit Eckpunkten $A,B,C$ und sei wie üblich $c$ die Seite gegeben durch die Punkte $A$ und $B$, $a$ die gegeben durch $B$, $C$ und $b$ gegeben durch die Punkte $A$ und $C$.
Dabei soll $c$ dieLänge $1$ haben, die Seite $a$ habe Länge $0,6$ und $b$ habe Länge $0,8$. Dieses Dreieck ist rechtwinklig mit Hypothenuse $c$, und es gilt, dass der Winkel an $A$, nennen wir ihn wie üblich [mm] $\alpha$, [/mm] erfüllt:
[mm] $\sin(\alpha)=\frac{|\overline{BC}|}{|\overline{AB}|}=\frac{0,6}{1}=0,6$ [/mm]
Ob sich dieser Winkel [mm] $\alpha$ [/mm] "schön" angeben läßt, also in "konkreter" Abhängigkeit von [mm] $\pi$, [/mm] könnte man versuchen, sich geometrisch zu überlegen; ich erspare es mir an dieser Stelle. Jedenfalls ist klar:
[mm] $\sin(x)=\frac{3}{5}$ [/mm] hat genau eine Lösung im Intervall [mm] $\left[0, \frac{\pi}{2} \right]$, [/mm] diese nennen wir [mm] $x_0$, [/mm] also [mm] $x_0:=\arcsin(0,6)$. [/mm] Der Taschenrechner liefert dafür:
[mm] $\arcsin(0,6) \approx [/mm] 0,644$, wobei man nicht vergessen sollte, den TR auf RAD zu stellen.
(Übrigens gibt es eine weitere Lösung im Intervall [mm] $\left[\frac{\pi}{2},\pi\right]$, [/mm] das sollte man im Auge behalten, wenn man oben z.B. nach der Lösung im Intervall [mm] $\left[4,5 \pi, 5\pi\right]$ [/mm] fragen würde. Generell sollte man bei derartigen Aufgaben halt erstmal "alle" Lösungen im Intervall [mm] $[0,2\pi]$ [/mm] im Auge haben!)
Weil der [mm] $\sin(.)$, [/mm] auf [mm] $\IR$ [/mm] definiert, die (kleinste) Periode [mm] $2\pi$ [/mm] hat, gilt für jedes $x [mm] \in \IR$ [/mm] und jedes $k [mm] \in \IZ$: [/mm]
[mm] $sin(x+k*2\pi)=\sin(x)$
[/mm]
Demnach gibt es auch in dem Intervall [mm] $\left[4\pi, \frac{9}{2}\pi\right]=\left[0+2*(2\pi), \frac{\pi}{2}+2*(2\pi)\right]$ [/mm] genau ein $x$ mit [mm] $\sin(x)=0,6$.
[/mm]
Im Intervall [mm] $\left[0,\frac{\pi}{2}\right]$ [/mm] hatten wir [mm] $x_0=\arcsin(0,6) \approx [/mm] 0,644$.
Wir setzen dann [mm] $x:=x_0+2*(2\pi) \in \left[4\pi, \frac{9}{2}\pi\right]$ [/mm] und behaupten, dass das die gesuchte Lösung ist.
Denn Du wirst sicherlich leicht einsehen:
[mm] $x_0=\arcsin(0,6) \in \left[0, \frac{\pi}{2}\right] \Rightarrow [/mm] x [mm] \in \left[4\pi, \frac{9}{2}\pi\right]$ [/mm] und [mm] $\sin(x)=\sin(x_0+2*(2\pi)) \Rightarrow \sin(x)=\sin(x_0)=0,6$.
[/mm]
Gruß,
Marcel
|
|
|
|