matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesIntervallhalbierungsverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Intervallhalbierungsverfahren
Intervallhalbierungsverfahren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallhalbierungsverfahren: Idee/Korrektur/Hilfe
Status: (Frage) beantwortet Status 
Datum: 19:46 Fr 03.12.2010
Autor: pitmat

Wir sollen zeigen, dass das Intervallhalbierungsverfahren eine Intervallschachtelung definiert.

Benutzen darf man:

wenn wir zwei Zahlen x und y haben, beide sind > 0, dann gibt es eine natürliche Zahl n, so dass [mm] x/2^n [/mm] < y

Daraus soll das jetzt gefolgert werden.

Ich denke, man muss zeigen, dass

lim von n gegen unendlich von [mm] (y-x/2^n) [/mm] = 0 ist. Stimmt das?

Aber wie kann man das aus der Voraussetzung folgern?

Ich habe angefangen das umzustellen:

[mm] y/2^n [/mm] - [mm] x/2^n [/mm] < a (a ist irgendeine Zahl > 0).

Das gilt.
Und es gilt:

[mm] y/2^n [/mm] < b, [mm] x/2^n [/mm] < c, b und c sind > 0.

--> [mm] y/2^n [/mm] - [mm] x/2^n [/mm] < b - c

Jetzt dachte ich, man kann b und c so klein wählen, dass es fast 0 ergibt. Dann würde auch die Differenz links fast 0 ergeben, sogar noch näher an 0 liegen und der Limes wäre 0.

Reicht das so? Was kann man sonst noch machen?

Ich wäre dankbar für Hilfe!

Liebe Grüße,
pitmat

        
Bezug
Intervallhalbierungsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Sa 04.12.2010
Autor: MathePower

Hallo pitmat,

> Wir sollen zeigen, dass das Intervallhalbierungsverfahren
> eine Intervallschachtelung definiert.
>
> Benutzen darf man:
>
> wenn wir zwei Zahlen x und y haben, beide sind > 0, dann
> gibt es eine natürliche Zahl n, so dass [mm]x/2^n[/mm] < y
>  
> Daraus soll das jetzt gefolgert werden.
>
> Ich denke, man muss zeigen, dass
>
> lim von n gegen unendlich von [mm](y-x/2^n)[/mm] = 0 ist. Stimmt
> das?
>  
> Aber wie kann man das aus der Voraussetzung folgern?
>
> Ich habe angefangen das umzustellen:
>  
> [mm]y/2^n[/mm] - [mm]x/2^n[/mm] < a (a ist irgendeine Zahl > 0).
>
> Das gilt.
> Und es gilt:
>  
> [mm]y/2^n[/mm] < b, [mm]x/2^n[/mm] < c, b und c sind > 0.
>
> --> [mm]y/2^n[/mm] - [mm]x/2^n[/mm] < b - c
>
> Jetzt dachte ich, man kann b und c so klein wählen, dass
> es fast 0 ergibt. Dann würde auch die Differenz links fast
> 0 ergeben, sogar noch näher an 0 liegen und der Limes
> wäre 0.
>  
> Reicht das so? Was kann man sonst noch machen?


Nutze doch die Eigenschaft des Intervallhalbierugnsverfahren aus,
daß das Intervall in jedem Schritt halbiert wird und bestimme daraus
die Länge dieses Intervalls.


>  
> Ich wäre dankbar für Hilfe!
>  
> Liebe Grüße,
>  pitmat


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]