matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesInverse Fouriertransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Inverse Fouriertransformation
Inverse Fouriertransformation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Fouriertransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:25 Sa 08.12.2007
Autor: ppad

Aufgabe 1
Eine 2T periodische Funktion f sei durch Ihre Fourierreihe


f(x) = [mm] \summe_{n= - {\infty}}^{\infty}c_ne^{i\bruch{\pi}{T}nx} [/mm]



mit

[mm] c_n [/mm] := [mm] \bruch{1}{2T} \int_{-T}^{T} f(x)e^{-(i\bruch{\pi}{T}nx)} \, [/mm] dx

gegeben. Zeigen Sie, dass die Fouriertransformierte von f durch

[mm] {\hat f (u)} [/mm] = [mm] \summe_{n= - {\infty}}^{\infty}c_n\delta(u [/mm] - [mm] \bruch{n}{2T}) [/mm]

gegeben ist, indem Sie die inverse Fouriertransformation berechnen.

Aufgabe 2
Eine 2T periodische Funktion f sei durch Ihre Fourierreihe


f(x) = [mm] \summe_{n= - {\infty}}^{\infty}c_ne^{i\bruch{\pi}{T}nx} [/mm]



mit

[mm] c_n [/mm] := [mm] \bruch{1}{2T} \int_{-T}^{T} f(x)e^{-(i\bruch{\pi}{T}nx)} \, [/mm] dx

gegeben. Zeigen Sie, dass die Fouriertransformierte von f durch

[mm] {\hat f (u)} [/mm] = [mm] \summe_{n= - {\infty}}^{\infty}c_n\delta(u [/mm] - [mm] \bruch{n}{2T}) [/mm]

gegeben ist, indem Sie die inverse Fouriertransformation berechnen.

Ich stehe einwenig auf dem Schlauch bei der Aufgabe.
Ich bin so vorgegangen.

Als erstes habe ich in die Fouriertransformierte das [mm] c_n [/mm] eingesetzt.



[mm] {\hat f (u)} [/mm] = [mm] \summe_{n= - {\infty}}^{\infty}c_n\delta(u [/mm] - [mm] \bruch{n}{2T}) [/mm] = [mm] \summe_{n= - {\infty}}^{\infty}(\bruch{1}{2T} \int_{-T}^{T} f(a)e^{-(i\bruch{\pi}{T}na)} \, da)\delta(u [/mm] - [mm] \bruch{n}{2T}) [/mm]

Jetzt habe ich mir gedacht da die [mm] \delta [/mm] - Funktion 1 liefert wenn
[mm] \begin{formel}u = \bruch{n}{2T} \end{formel} [/mm] und 0 sonst kann ich einfach nach n auflösen und für die im Integral [mm] \begin{formel} n = u2T\end{formel} [/mm]  einsetzten.

Also

[mm] {\hat f (u)} [/mm] = [mm] \bruch{1}{2T} \int_{-T}^{T} f(a)e^{-(2i\pi ua)} \, \begin{formel} da \end{formel} [/mm]

Vielleicht habe ich jetzt schon ein Fehler gemacht???

Nun da ich die Fouriertransformierte habe habe ich die Inverse Fouriertransformation zu berechnen versucht.

Also
[mm] \begin{formel} f(x) = \end{formel} \int_{-T}^{T} (\bruch{1}{2T} \int_{-T}^{T} f(a)e^{-(2i\pi ua)} \, \begin{formel} da \end{formel}) e^{i\bruch{\pi}{T}ux} [/mm] du

Und hier komme ich nicht weiter, eigentlich muss ich jetzt zeigen dass [mm] \begin{formel} f(x) \end{formel} [/mm] aus der Aufgabenstellung gleich meinem [mm] \begin{formel} f(x) \end{formel} [/mm] ist.
Könnte mir jemand einen Tipp geben? Vielleicht habe ich einfach bei den Umrechnungen irgendwo einen Fehler gemacht?
Vielen Dank im voraus

ppad

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Fouriertransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Mi 12.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]