matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationInverse Laplace-Transformierte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Laplace-Transformation" - Inverse Laplace-Transformierte
Inverse Laplace-Transformierte < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Laplace-Transformierte: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:48 Mi 04.06.2014
Autor: Malohm

Aufgabe
[mm] \Phi [/mm] = - [mm] F(\gamma,\alpha,p)* (\bruch{1}{a^2}p^2 [/mm] + [mm] 2Mi\bruch{\alpha}{a}p [/mm] - [mm] \alpha^2(M^2-1)+\gamma^2)^{-\bruch{1}{2}} [/mm]

Nachtrag: Das hab ich schon mal umformulert zu:
[mm] \Phi [/mm] = - [mm] F(\gamma,\alpha,p)* ((\bruch{1}{a}p [/mm] + [mm] Mi\alpha)^2 [/mm] + [mm] (\alpha^2+\gamma^2))^{-\bruch{1}{2}} [/mm]



Hallo,

ich versuche aus einem Paper eine inverse Laplace-Transformation nachzuvollziehen, was mir noch nicht ganz gelingt. Es wurde die Inverse von p zurück in den Zeitbereich t ermittelt. In der Gleichung stehen ne ganze Menge Konstanten, die nicht von p abhängig sind: a, M, [mm] \alpha, \gamma.Es [/mm] sollte als Lösung rauskommen:

[mm] \phi [/mm] = -a [mm] \integral_{0}^{t} f(\gamma,\alpha,\tau) e^{-iMa\alpha (t-\tau)} *J_0*[(\alpha^2+\gamma^2)^{\bruch{1}{2}}*a(t-\tau)]d\tau [/mm]

Also, um das zu verstehen, hab ich diese Integrationstabellen hier nachgeschlagen: []Bateman. Dachte es könnte mit folgender Transformationsregel klappen:

[mm] r^{-1}g(r) [/mm] --> [mm] \integral_{0}^{t}J_0[a(t^2-u^2)^{1/2}]f(u) [/mm] du
mit
r = [mm] (p^2+a^2)^{1/2} [/mm]

Irgendwie komm ich trotzdem nicht drauf. Kann mir da jemand helfen?

Vielen Dank schonmal.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Laplace-Transformierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Fr 06.06.2014
Autor: Malohm

Hat sich erledigt. Stichwort Faltungsintegral und die entsprechende Transformationsvorschrift führten auf das gesuchte Ergebnis..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]