matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenInverse Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Nichtlineare Gleichungen" - Inverse Matrix
Inverse Matrix < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage/Hilfe
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 06.09.2006
Autor: Antimon

Hallo zusammen,
ich bin gerade dabei, Numerik zu lernen und hätte da eine Frage. In meinem Skript steht, dass eine Inverse Matrix beim Newton-Verfahren für Systeme numerisch unbrauchbar sei. Ich versteh aber nicht, warum. KAnn mir da einer weiter helfen? Größtenteils geht man doch immer von regulären Matrizen aus.
Liegt das daran, dass der Fehler zu groß wird. Wäre dankbar für ne ausführliche Antwort.

        
Bezug
Inverse Matrix: Versuch einer Erklärung
Status: (Antwort) fertig Status 
Datum: 18:35 Do 07.09.2006
Autor: Ramanujan

Hallo Antimon!!

Also mein damaliger Numerikprofessor hat bei jedem Verfahren von zu viel Aufwand geredet, d.h. bei jedem numerischen Verfahren versucht man so kurz und geradlinig wie möglich zum Ergebnis zu kommen, vor allem wenn das Problem handschriftlich gelöst wird. Schon das Rechnen von Systemen mit lediglich zwei Gleichungen, verursacht viel Arbeit.
Deshalb behilft man sich methodisch gesehen mit einem kleinen Kniff (x,p und F, F' sind Vektoren bzw. Matrizen - habe die Vektorenstriche weggelassen):
Die allg. Grundform lautet ja [mm] x^{k+1}=x^{k}-F'(x^{k})^{-1}*F(x^{k}) [/mm] mit k=0(1)... und [mm] x^{0}=Startvektor, [/mm] wobei k den k-ten Iterationsschritt verkörpert.
Nun setze man [mm] p^{k}=F'(x^{k})^{-1}*F(x^{k}) [/mm]  [1]. Zum Lösen dieses Produktes löse man das Gleichungssystem [mm] F'(x^{k})*p^{k}=F(x^{k}) [/mm] nach entsprechenden Umformen von [1].
Man erhält nun [mm] p^{k} [/mm] und setze in die allgemeine Form ein.
Somit brauchst du generell keine inverse Matrix berechnen, was ja beispielsweise bei Dimension >4 ja auch wieder zusätzlich extrem viel Zeit beansprucht. Zudem kannst du nicht immer davon ausgehen, dass alle Matrizen F regulär sind. Du umgehst demzufolge einer Menge von Problemen.
Ich weiß nicht, ob dir das ausreichend erscheint, da es ja im Grunde genommen keine vollkommene mathematische Begründung ist?!

Trotzdem noch viel Erfolg beim Lernen!!

Saludos
Ramanujan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]