matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInverse der Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Inverse der Matrix
Inverse der Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse der Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:48 Mo 13.12.2004
Autor: Nadja

Hi

Kann mir jemand vielleicht bei der folgenden Aufabe helfen.

1) Bestimme ( für a  [mm] \in [/mm]  K und n  [mm] \in [/mm] N beliebig ) die Inverse der Matrix
    [mm] \pmat{ 1 & a & a^2 & .... & a^n \\ 0 & 1 & a & ... & a^{n-1} \\ 0 & 0 & 1 & ... & a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 1 } [/mm] .

2) Bestimme die Inverse der (r+s)x(r+s) - Matrix

            [mm] \pmat{ I_r & 0 \\ a & I_s } [/mm]    
   wobei a  [mm] \in [/mm] M(s*r; K)

Danke

nadja
Ich habe diese Aufgabe in keinen anderen Forum gestellt.

        
Bezug
Inverse der Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mo 13.12.2004
Autor: cremchen

Halli hallo!

> Kann mir jemand vielleicht bei der folgenden Aufabe
> helfen.

Ich wills probieren [grins]

> 1) Bestimme ( für a  [mm]\in[/mm]  K und n  [mm]\in[/mm] N beliebig ) die
> Inverse der Matrix
>      [mm]\pmat{ 1 & a & a^2 & .... & a^n \\ 0 & 1 & a & ... & a^{n-1} \\ 0 & 0 & 1 & ... & a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 1 }[/mm]
> .

Ich hab mir mal erlaubt deine Matrix zu verbessern (du hattest dich etwas bei den Exponenten der a's vertan)

ok, also die Inverse einer Matrix berechnet man ja, indem man die Matrix in die EInheitsmatrix überführt und die gleichen Umformungen auf die EInheitsmatrix anwendet, bei uns wär das also wie folgt
[mm] \vmat{ 1 & a & a^2 & .... & a^{n-1} & a^n \\ 0 & 1 & a & ... & a^{n-2} & a^{n-1} \\ 0 & 0 & 1 & ... & a^{n-3} & a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 1 & a\\ 0 & 0 & 0 & ... & 0 & 1 } \vmat{ 1 & 0 & 0 & .... & 0 & 0 \\ 0 & 1 & 0 & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & 1 & a \\ 0 & 0 & 0 & ... & 0 & 1 } [/mm]
Jetzt ziehen wir von der ersten [mm] a^{n}-mal [/mm] die letzte Zeile ab, von der zweiten [mm] a^{n-1}-mal [/mm] die letzte von der zweiten und so weiter, also
[mm] \vmat{ 1 & a & a^2 & .... & a^{n-1} & 0 \\ 0 & 1 & a & ... & a^{n-2} & 0 \\ 0 & 0 & 1 & ... & a^{n-3} & 0 \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 } \vmat{ 1 & 0 & 0 & .... & 0 & -a^n \\ 0 & 1 & 0 & ... & 0 & -a^{n-1} \\ 0 & 0 & 1 & ... & 0 & -a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 } [/mm]
Jetzt ziehen wir [mm] a^{n-1}-mal [/mm] die vorletzte Zeile von der ersten ab, [mm] a^{n-2}-mal [/mm] die vorletzte von der zweiten und so weiter. Dabei passiert bei der letzten Spalte folgendes:
1.Spalte: [mm] a^{n}-a*a^{n-1}=0 [/mm]
2.SPalte: [mm] a^{n-1}+a*a^{n-2}=0 [/mm]
..., also erhalten wir:
[mm] \vmat{ 1 & a & a^2 & .... & 0 & 0 \\ 0 & 1 & a & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 } \vmat{ 1 & 0 & 0 & .... & -a^{n-1} & 0 \\ 0 & 1 & 0 & ... & -a^{n-2} & 0 \\ 0 & 0 & 1 & ... & -a^{n-3} & 0 \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 } [/mm]
und so weiter und so fort, am ende hast du dann
[mm] A^{-1}=\pmat{ 1 & -a & 0 & .... & 0 & 0 \\ 0 & 1 & -a & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & 1 & -a \\ 0 & 0 & 0 & ... & 0 & 1 } [/mm]
Müßte eigentlich stimmen, zumindest ergab mein nachrechnen dass es stimmt [grins]

> 2) Bestimme die Inverse der (r+s)x(r+s) - Matrix
>  
> [mm]\pmat{ I_r & 0 \\ a & I_s }[/mm]    
> wobei a  [mm]\in[/mm] M(s*r; K)

Hier verfährst du eigentlich analog
[mm] \vmat{ 1 & 0 & 0 & .... & 0 & 0 \\ a & 1 & 0 & ... & 0 & 0 \\ a & a & 1 & ... & 0 & 0 \\ ... \\ a & a & a & ... & a & 1} [/mm]
Nur diesmal fängst du von oben an, bzw. Ziehst die erste Zeile a-mal von der letzten, a-mal von der vorletzten usw. ab!

Wenn du Probleme dabei hast meld dich einfach nochmal, und schreib am besten auch wo du hängst!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Inverse der Matrix: zweite Matrix
Status: (Frage) beantwortet Status 
Datum: 12:02 Do 16.12.2004
Autor: Chlors

Hi,
kannst du mir erklären, wie du beim zweiten Teil von der angegeben Matrix zur letzten Matrix kommt, die man dann auf Inverse untersuchen kann??
Liebe Grüße, Conny.

Bezug
                        
Bezug
Inverse der Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Do 16.12.2004
Autor: Pommes

Die angegebene Matrix ist ja nur die Blockdarstellung einer größeren Matrix. [mm] I_{r} [/mm] und [mm] I_{s} [/mm] sind die Einheitsmatrizen mit r bzw. s Spalten, 0 ist natürlich die Nullmatrix und a ist eine s [mm] \times [/mm] r Matrix. Die eigentliche Matrix sieht dann so aus:

[mm] \vmat{ 1 & 0 & ... & 0 & 0 & ... & ... & 0 \\ 0 & 1 & 0 & ... & ... & ... & ... & ... \\ ... & ... & ... & 0 & ... & ... & ... & ... \\ 0 & ... & ... & 1 & 0 & ... & ... & 0 \\ a_{11} & a_{12} & ... & a_{1r} & 1 & 0 & ... & 0 \\ a_{21} & ... & ... & ... & 0 & 1 & ... & ... \\ ... & ... & ... & ... & ... & ... & ... & 0 \\ a_{s1} & ... & ... & a_{sr} & 0 & ... & 0 & 1} [/mm]

Diese Matrix ist dann eine r+s [mm] \times [/mm] r+s Matrix

Dann multiplizierst du immer eine der ersten Zeilen mit dem entprechenden a und subtrahierst die, so dass da Nullen entstehen etc.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]