matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse/transponierte Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Inverse/transponierte Matrix
Inverse/transponierte Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse/transponierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Fr 09.11.2007
Autor: MathiasK

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zeige, dass [mm] (A^{-1})'=(A')^{-1}. [/mm]

Hallo,

Diese Frage dürfte eigentlich nicht so schwierig sein, aber ich stecke irgendwie fest. Das A ist in diesem Fall eine lineare Abbildung, und man sollte diesen kleinen Beweis mit Hilfe der bilinearen Form durchführen.

Besten Dank für jeglich Hilfe!!

        
Bezug
Inverse/transponierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Fr 09.11.2007
Autor: andreas

hi

ich vermute mal, nach der wahl deines titels, dass $A$ eine quadratische, invertierbare matrix ist und $'$ für transponieren steht? ich weiß nicht, ob hier die betrachtung von bilinearformen wirklich der zeilführende weg ist. ich würde einfach mal mit hilfe der rechenregeln für das transponieren

[m] (A^{-1})' \cdot A' [/m]

ausrechnen und mit der definierenden relation für eine inverse matrix von $A'$ vergleichen. was kann man damit mithilfe der eindeutigkeit der inversen schließen?

grüße
andreas

Bezug
                
Bezug
Inverse/transponierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Sa 10.11.2007
Autor: MathiasK

Hey,

besten Dank für deine Antwort, ist dieses Vorgehen korrekt?

[mm] (A^{-1})'A'=(A*A^{-1})'=I [/mm]
[mm] A'(A')^{-1}=(A^{-1})'A' [/mm]
[mm] A'(A')^{-1}(A')^{-1}=(A^{-1})' [/mm]
[mm] (A')^{-1}=(A^{-1})' [/mm]

Nochmals vielen Dank.



Bezug
                        
Bezug
Inverse/transponierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 So 11.11.2007
Autor: andreas

hi

> [mm](A^{-1})'A'=(A*A^{-1})'=I[/mm]

das reicht doch (fast) schon. zumindest hast du damit gezeigt, dass [mm] $(A^{-1})'$ [/mm] das linksinverse zu $A'$ ist. jetzt noch argumentieren, dass es auch rechtsinvers ist und dass das inverse eindeutig ist, dann bist du fertig.


>  [mm]A'(A')^{-1}=(A^{-1})'A'[/mm]
>  [mm]A'(A')^{-1}(A')^{-1}=(A^{-1})'[/mm]
>  [mm](A')^{-1}=(A^{-1})'[/mm]

hier fehlen irgendwelche zeichen dazwischen (ich denke mal implikationspfeile). ansonsten ist mir noch nicht ganz klar, warum die erste zeile diese dreierblocks gelten sollte.


grüße
andreas

Bezug
                                
Bezug
Inverse/transponierte Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:34 Mo 12.11.2007
Autor: MathiasK

OK, alles klar. Besten Dank für deine Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]