matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieInverser Limes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Inverser Limes
Inverser Limes < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverser Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:25 Do 02.12.2010
Autor: Tinuviel-Aelin

Aufgabe
p Primzahl, n [mm] \ge [/mm] 1. [mm] \IZ/p^{n}\IZ [/mm] Restklassenring.
Die Restklassenabbildung [mm] \IZ \to \IZ/p^{n}\IZ [/mm] , x [mm] \mapsto [/mm] x mod [mm] p^{n} [/mm] verschwindet auf [mm] p^{m}\IZ [/mm] für alle m [mm] \ge [/mm] n; d.h. es gibt Restklassenabbildungen [mm] \rho_{n} [/mm] : [mm] \IZ/p^{n+1}\IZ \to \IZ/p^{n}\IZ. [/mm]

Hallo,
ich versuche gerade die Konstruktion des inversen (/projektiven) Limes' zu verstehen. Als Grundlage dafür dient obige Aussage. Dabei sind mir zwei Dinge nicht ganz klar:
1. Sind die Elemente des Restklassenrings [mm] \IZ/p^{n}\IZ [/mm] wieder Restklassenringe für jeweils feste p (d.h. es gäbe n Elemente, die dann wieder [mm] p^{n} [/mm] Restklassen enthalten?)? Oder sind es sämtliche Restklassen, die es für alle verschiedenen p und verschiedenen n insgesamt gibt?
2. (Hauptproblem:) Was bedeutet: "die Abbildung verschwindet"? Heißt das einfach, dass sie für m [mm] \ge [/mm] n nicht definiert ist? Das würde vielleicht erklären, wieso bei der Definition des inversen Limes dann [mm] \rho_{n}(x_{n+1}) [/mm] = [mm] x_{n} [/mm]  gilt?

Ich bin ziemlich verwirrt... Danke für jede Hilfe!

        
Bezug
Inverser Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Do 02.12.2010
Autor: felixf

Moin!

> p Primzahl, n [mm]\ge[/mm] 1. [mm]\IZ/p^{n}\IZ[/mm] Restklassenring.
>  Die Restklassenabbildung [mm]\IZ \to \IZ/p^{n}\IZ[/mm] , x [mm]\mapsto[/mm]
> x mod [mm]p^{n}[/mm] verschwindet auf [mm]p^{m}\IZ[/mm] für alle m [mm]\ge[/mm] n;
> d.h. es gibt Restklassenabbildungen [mm]\rho_{n}[/mm] :
> [mm]\IZ/p^{n+1}\IZ \to \IZ/p^{n}\IZ.[/mm]
>
>  Hallo,
>  ich versuche gerade die Konstruktion des inversen
> (/projektiven) Limes' zu verstehen. Als Grundlage dafür
> dient obige Aussage. Dabei sind mir zwei Dinge nicht ganz
> klar:

Mir scheint, deine Frage handelt nicht wirklich vom projektiven Limes, sondern allgemein von Restklassenringen.

>  1. Sind die Elemente des Restklassenrings [mm]\IZ/p^{n}\IZ[/mm]
> wieder Restklassenringe für jeweils feste p (d.h. es gäbe
> n Elemente, die dann wieder [mm]p^{n}[/mm] Restklassen enthalten?)?

Die Elemente von [mm] $\IZ/p^n\IZ$ [/mm] sind Nebenklassen $a + [mm] p^n\IZ$. [/mm] Davon gibt es [mm] $p^n$ [/mm] verschiedene, die du z.B. mit $a = 0, 1, [mm] \dots, p^n [/mm] - 1$ alle erhalten kannst.

> Oder sind es sämtliche Restklassen, die es für alle
> verschiedenen p und verschiedenen n insgesamt gibt?
>  2. (Hauptproblem:) Was bedeutet: "die Abbildung
> verschwindet"?

Allgemein sagt man in der Mathematik, dass eine Abbildung $f$ auf einer Menge $M$ verschwindet, wenn $f(M) = [mm] \{ 0 \}$ [/mm] ist.

Hier bedeutet das also: die Abbildung [mm] $\IZ \to \IZ/p^n\IZ$, [/mm] $x [mm] \mapsto [/mm] x + [mm] p^n\IZ$ [/mm] bildet jedes Element aus [mm] $p^m\IZ$ [/mm] auf $0 = 0 + [mm] p^n\IZ$ [/mm] ab (das ist die 0 in [mm] $\IZ/p^n\IZ$). [/mm]

Daraus, dass es auf [mm] $p^m\IZ$ [/mm] verschwindet, folgt mit Hilfe des Homomorphiesatzes, dass es eine eindeutig bestimmte Abbildung [mm] $\IZ/p^m\IZ \to \IZ/p^n\IZ$ [/mm] gibt mit $x + [mm] p^m\IZ \mapsto [/mm] x + [mm] p^n\IZ$. [/mm]

(Fuer $n > m$ waere diese nicht wohldefiniert. Fuer $n [mm] \le [/mm] m$ ist sie es jedoch.)

> Heißt das einfach, dass sie für m [mm]\ge[/mm] n
> nicht definiert ist?

Doch, sie ist fuer jedes $m [mm] \ge [/mm] n$ definiert.

> Das würde vielleicht erklären, wieso
> bei der Definition des inversen Limes dann
> [mm]\rho_{n}(x_{n+1})[/mm] = [mm]x_{n}[/mm]  gilt?

Das ist schlichtweg die Definition des projektiven Limes: er ist die Menge aller Folgen [mm] $(x_n)_{n\in\IN}$ [/mm] mit [mm] $\rho_n(x_{n+1}) [/mm] = [mm] x_n$ [/mm] fuer alle $n$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]