matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInvertierbare Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Invertierbare Matrix
Invertierbare Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbare Matrix: Matrix mit a aus R
Status: (Frage) beantwortet Status 
Datum: 00:52 Mo 29.12.2014
Autor: minasul

Aufgabe
Für welche [mm] \gamma \varepsilon \IR [/mm] ist die folgende Matrix invertierbar?

A:= [mm] \pmat{ \gamma-2 & 3 & 4\\ 1 & \gamma-1 &2\\ 0 & 0 & \gamma-4 } [/mm]

Meine Idee wäre erst einmal die Nullen zu erzeugen (mit Ausnahme der Hauptdiagonalen. ) anschließen würde ich dann schauen was a sein müsste damit die Hauptdiagonalen 1 ergeben?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Invertierbare Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mo 29.12.2014
Autor: angela.h.b.


> Für welche [mm]\gamma \varepsilon \IR[/mm] ist die folgende Matrix
> invertierbar?

>

> A:= [mm]\pmat{ \gamma-2 & 3 & 4\\ 1 & \gamma-1 &2\\ 0 & 0 & \gamma-4 }[/mm]

>

> Meine Idee wäre erst einmal die Nullen zu erzeugen (mit
> Ausnahme der Hauptdiagonalen. ) anschließen würde ich
> dann schauen was a sein müsste damit die Hauptdiagonalen 1
> ergeben?

Hallo,

ein a sehe ich überhaupt nicht,
und was Du genau planst, ist mir nicht recht klar, das müßtest Du mal vormachen.

Die Invertierbarkeit von Matrizen kann man leicht an ihrer Determinante erkennen:
ist die det =0, dann ist die Matrix nicht invertierbar,
ist sie [mm] \not=0, [/mm] ist sie invertierbar.

LG Angela


>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]