matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenInvertierung beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Invertierung beweisen
Invertierung beweisen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierung beweisen: tipp
Status: (Frage) beantwortet Status 
Datum: 20:29 Do 04.12.2008
Autor: james_kochkessel

Aufgabe
Sei A = [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] . Zeigen Sie:

Ist [mm] detA\not=0 [/mm] , so ist A invertierbar und [mm] A^{-1} [/mm] = [mm] \bruch{1}{detA} \pmat{ a_{22} & -a_{12} \\ -a_{21} & a_{11} } [/mm]

so, brauch gleich nochma hilfe und zwar folgendes, laut definitionen und co kom ich schon mit, wieso das mit dem 1/detA * .... ist,

allerdings raff ich gerade nicht, wieso die beiden elemente auf der diagonale vertauscht sind und wieso die andern beiden elemente auf einmal negativ sind

laut der definition, müsste man nur an der hauptdiagonalen spiegeln, so dass sich hier eigl nur das [mm] a_{12} [/mm] und das [mm] a_{21} [/mm] vertauschen, oder was gibt es hier wieder zu beachten ^^


EEE// hab grad noch was entdeckt und zwar, dass man [mm] A_{ik} [/mm] durch [mm] (-1)^{i+k} [/mm] berechnet wird, so is mir schonma klar, wieso die beiden negativ sind, aber immernoch keine ahnung wieso die beiden auf der diagonale vertauscht sind
danke schonmal

        
Bezug
Invertierung beweisen: nachrechnen
Status: (Antwort) fertig Status 
Datum: 20:45 Do 04.12.2008
Autor: Al-Chwarizmi


> Sei A = [mm]\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} }[/mm] .
> Zeigen Sie:
>  
> Ist [mm]detA\not=0[/mm] , so ist A invertierbar und [mm]A^{-1}=\bruch{1}{detA} \pmat{ a_{22} & -a_{12} \\ -a_{21} & a_{11} }[/mm]


good evening Mr. Boiler,


dies könnte man wohl doch einfach durch Nachrechnen
entscheiden. Führe die Matrixmultiplikation

     [mm] \bruch{1}{detA}*\pmat{ a_{22} & -a_{12} \\ -a_{21} & a_{11} }*\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm]

einfach mal durch !

Bezug
                
Bezug
Invertierung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 04.12.2008
Autor: james_kochkessel

ja das mim nachrechnen hatte ich auch vor, aber damit kann ich doch nicht zeigen, dass das gilt oder ?

ich bin soweit, das ich weis warum die nebendiagonale negativ ist, nur frag ich mich gerade wie die beiden auf der hauptdiagonale ausgetauscht wurden,
ich dachte immer bei einer 2x2 matrix rechnet man , wenn man zb. hat [mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm]
1*4 - 3*2 = -2

um in meinem beispiel oben auf die [mm] a_{22} [/mm] zu kommen, müsste ich ja quasi die laplacescher entwicklungssatz nehmen, durch denn dann nurnoch die a22 übrig bleibt, das ist eigentlich das problem das ich habe, fals das verständlich wird

selbiges müsste ja dann auch für die [mm] -a_{12} [/mm] gelten, da ich [mm] (-1)^{3} [/mm] * [mm] a_{21} [/mm] habe und ja noch beachten muss, dass die werte neben der hauptdiagonale gespiegelt werden

ist das die methode, nach der hier gerechnet wurde ?
wenn das stimmt, dann hat sich meine frage eigl erübrigt

lg

Bezug
                        
Bezug
Invertierung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Do 04.12.2008
Autor: Al-Chwarizmi


> ja das mim nachrechnen hatte ich auch vor, aber damit kann
> ich doch nicht zeigen, dass das gilt oder ?
>  
> ich bin soweit, das ich weis warum die nebendiagonale
> negativ ist, nur frag ich mich gerade wie die beiden auf
> der hauptdiagonale ausgetauscht wurden,
>  ich dachte immer bei einer 2x2 matrix rechnet man , wenn
> man zb. hat [mm]\pmat{ 1 & 2 \\ 3 & 4 }[/mm]
>  1*4 - 3*2 = -2      [ok]

    allgemein also      [mm] det(A)=a_{11}*a_{22}-a_{21}*a_{12} [/mm]
  

> um in meinem beispiel oben auf die [mm]a_{22}[/mm] zu kommen, müsste
> ich ja quasi die laplacescher entwicklungssatz nehmen,
> durch denn dann nurnoch die a22 übrig bleibt, das ist
> eigentlich das problem das ich habe, fals das verständlich
> wird
>  
> selbiges müsste ja dann auch für die [mm]-a_{12}[/mm] gelten, da ich
> [mm](-1)^{3}[/mm] * [mm]a_{21}[/mm] habe und ja noch beachten muss, dass die
> werte neben der hauptdiagonale gespiegelt werden
>
> ist das die methode, nach der hier gerechnet wurde ?
>  wenn das stimmt, dann hat sich meine frage eigl erübrigt
>  
> lg


Man muss für diese Aufgabe, so wie sie da steht,
eigentlich keine besonderen Kenntnisse wie
Entwicklungssatz anwenden. Da eine Formel
zur Berechnung der Inversen schon angegeben
wird, genügt zum Nachweis, dass diese tatsächlich
stimmt und dass die Inverse im Fall [mm] det(A)\not=0 [/mm] wirklich
existiert, das Nachrechnen und die Feststellung,
dass das Produkt die Einheitsmatrix ergibt.

Dass eine Matrix B mit B*A=A*B=E , falls es eine solche
überhaupt gibt, eindeutig ist, gehört zu den allge-
meinen Sätzen über Matrizen (bzw. Gruppen)
und muss hier wohl nicht auch noch bewiesen
werden.


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]