matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIrreduzible&Reduzible Elemente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Irreduzible&Reduzible Elemente
Irreduzible&Reduzible Elemente < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzible&Reduzible Elemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mi 08.02.2012
Autor: Blackbull

Hallo,

habe eine Verständnisfrage, zur Irreduzibilität und reduzibilität von Elementen. Es heißt ja, ein Element p ist irreduzibel, wenn aus p=a*b folgt, dass a oder b eine Einheit vom Ring ist. Und ein Element p ist reduzibel, wenn es als Produkt von 2 Nichteinheiten geschrieben werden kann.
Aber was ist, wenn a und b Einheiten sind, ist dann p irreduzibel oder reduzibel. Ich hätte gesagt, dass es irreduzibel ist, aber wir haben folgendes Beispiel:
[mm] 2=2*x^0 [/mm] ist reduzibel in Q[x]. 2 und [mm] x^0=1 [/mm] sind ja beides Einheiten in Q[x]. Oder ist das falsch.
Und sind Einheiten immer reduzibel oder irreduzibel? Würde mich über eine Antwort sehr freuen. Vielen Dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Irreduzible&Reduzible Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mi 08.02.2012
Autor: Schadowmaster

moin Blackbull,

Reduziblität bzw. Irreduziblität ist nur für Nichteinheiten definiert.
Also sei $R$ ein kommutativer Ring, $x [mm] \in [/mm] R$ keine Einheit und $x [mm] \neq [/mm] 0$.
Dann heißt $x$ reduzibel, wenn aus $x=a*b$ folgt $a$ ist Einheit oder $b$ ist Einheit in $R$.
Da $2  [mm] \in \IQ[x]$ [/mm] eine Einheit ist, ist reduzibel oder nicht garnicht dafür definiert.
Sind in deinem anderen Beispiel $a$ und $b$ beides Einheiten, so ist $p=ab$ auch eine Einheit, also ist auch hier der Begriff sinnlos.

lg

Schadow

Bezug
                
Bezug
Irreduzible&Reduzible Elemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mi 08.02.2012
Autor: Blackbull

Danke für die schnelle Antwort =)
p ist irreduzibel, wenn a oder b eine Einheit ist oder? nicht reduzibel.
Aber woher weiß man dann, dass 2 in Q[x] reduzibel ist.
Wir haben geschrieben, das Polynom [mm] 2=2*x^0 [/mm] ist irreduzibel in Z[x], aber nicht in Q[x]. Muss man doch iwie zeigen können.

Bezug
                        
Bezug
Irreduzible&Reduzible Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Mi 08.02.2012
Autor: felixf

Moin!

> Danke für die schnelle Antwort =)
>  p ist irreduzibel, wenn a oder b eine Einheit ist oder?
> nicht reduzibel.

Naja, wenn $p = a b$ ist und $a$ oder $b$ eine Einheit ist, dann sagt das erstmal nicht viel ueber $p$ aus. Du kannst immer $p = 1 [mm] \cdot [/mm] p$ schreiben z.B.

Wenn aus $p = a b$ folgt, dass immer entweder $a$ oder $b$ eine Einheit ist, dann ist $p$ irreduzibel.

> Aber woher weiß man dann, dass 2 in Q[x] reduzibel ist.

Ist es gar nicht. Es ist dort eine Einheit.

>  Wir haben geschrieben, das Polynom [mm]2=2*x^0[/mm] ist irreduzibel
> in Z[x], aber nicht in Q[x]. Muss man doch iwie zeigen
> können.  

In [mm] $\IZ[x]$ [/mm] ist es irreduzibel (da $2$ ein Primelement in [mm] $\IZ$ [/mm] ist, ist es auch ein Primelement in [mm] $\IZ[x]$, [/mm] und damit irreduzibel). In [mm] $\IQ[x]$ [/mm] ist es eine Einheit.

LG Felix


Bezug
                                
Bezug
Irreduzible&Reduzible Elemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Mi 08.02.2012
Autor: Blackbull

Des heißt, man weiß nicht oder es interessiert nicht, ob eine Einheit reduzibel oder irreduziebel ist.
Wir haben noch ein zweites Bsp, nur nochmal, ob ichs richtig verstanden habe.
Das Polynom 2x+2=2(x+1) ist irreduzibel in Q[x], aber nicht in Z[x].
Irreduzibel ist es in Q[x] weil 2 eine Einheit ist und x+1 nicht. Und es ist reduzibel in Z[x], weil 2 und x+1 Nichteinheiten sind. Stimmt das?

Bezug
                                        
Bezug
Irreduzible&Reduzible Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mi 08.02.2012
Autor: Schadowmaster


> Des heißt, man weiß nicht oder es interessiert nicht, ob
> eine Einheit reduzibel oder irreduziebel ist.

genau

> Wir haben noch ein zweites Bsp, nur nochmal, ob ichs
> richtig verstanden habe.
>  Das Polynom 2x+2=2(x+1) ist irreduzibel in Q[x], aber
> nicht in Z[x].
>  Irreduzibel ist es in Q[x] weil 2 eine Einheit ist und x+1
> nicht.

Und $x+1$ ist irreduzibel, das sollte man nicht vergessen.

> Und es ist reduzibel in Z[x], weil 2 und x+1 Nichteinheiten sind. Stimmt das?

Stimmt genau.

lg

Schadow

Bezug
                                                
Bezug
Irreduzible&Reduzible Elemente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 08.02.2012
Autor: Blackbull

Danke für die Hilfe =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]