matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikIrrfahrt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Irrfahrt
Irrfahrt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irrfahrt: Aufgabe
Status: (Frage) überfällig Status 
Datum: 19:22 So 09.11.2008
Autor: Damn88

Aufgabe
Wir betrachten eine Irrfahrt [mm] S_n [/mm] = [mm] \summe_{i=1}^{n} X_i [/mm] mit [mm] X_i \in [/mm] { -1,1 } und
[mm] P[X_1=x_1,X_2=x_2,...,X_N=x_N] [/mm] = [mm] p^{(N+\summe_{i=1}^{n} x_i)/2}*(1-p)^{(N-\summe_{i=1}^{n} x_i)/2} [/mm] für p [mm] \in [/mm] (0,1), p [mm] \not= [/mm] 1/2
a) Berechnen Sie [mm] P[S_N=k] [/mm]
b) Berechnen Sie [mm] E[((1-p)/p)^{S_N}] [/mm]
c) Definieren Sie P*[A] = [mm] E[I_A *a^{-N} *(\bruch{1-p}{p})^{\bruch{S_N}{2}}] [/mm]
Zeigen Sie, dass P* eine Wahrscheinlichkeitsverteilung ist und berechnen Sie
[mm] P*[X_1=x_1,X_2=x_2,...,X_N=x_N] [/mm]

Hey, ich komme mit der Aufgabe nicht ganz klar.
Ich poste einfach mal meine (wenigen) Ansätze!
a) [mm] P[S_N [/mm] = k] = [mm] P[\summe_{i=1}^{N} X_i [/mm] = k]
= [mm] p^{\bruch{N+k}{2}}*(1-p)^{\bruch{N-k}{2}} [/mm]
Naja..das kommt mir etwas kurz und daher falsch vor.. Es sei denn ich müsste hier noch weiter rechnen..kann mir das jmd sagen?
Darf ich von [mm] \summe_{i=1}^{N} X_i [/mm] = k überhaupt auf [mm] \summe_{i=1}^{N} x_i [/mm] = k  schließen?


b) Ich weiß noch nicht mal wie ich [mm] E[((1-p)/p)^{S_N}] [/mm] anders aufschreiben kann.
"Normal" ist E[X] = [mm] \summe_{k=0}^{\infty}k*P[X=k] [/mm]
Wie schreib ich denn dann [mm] E[((1-p)/p)^{S_N}] [/mm] auf?
So vllt?
[mm] E[((1-p)/p)^{S_N}]= \summe_{k=0}^{\infty} k*P[((1-p)/p)^{S_N}=k] [/mm]
= [mm] \summe_{k=0}^{\infty} k*P[(1-p)^{\summe_{i=1}^{N} X_i}*p^{-\summe_{i=1}^{N} X_i} [/mm] =k]
*überfordert*

c) Was genau muss ich alles zeigen um zu zeigen, dass P* eine Wahrscheinlichkeitsverteilung ist?


Ich hoffe mir kann jemand helfen. Ich will auch gar keine Komplettlösung sondern einfach "nur" Tipps..damit ich es dann auch verstehe!

Danke und viele Grüße!

        
Bezug
Irrfahrt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Di 11.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]