matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraIsometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Isometrie
Isometrie < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isometrie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:16 So 15.04.2007
Autor: mathedepp_No.1

Aufgabe
[Dateianhang nicht öffentlich]

Hallo liebe MAthe-Freaks,

mit dieser Aufgabe komme ich auf keinen grünen Zweig, weil ich noch nicht mal die Aufgabe verstehe:-( geschweige denn die dazugehörigen Aufgabenstellungen :-(

Wie ihr seht, großes Disaster!!!Könnt ihr mir helfen??

Wäre prima!!

Viele liebe GRüße, der mathedepp_No.1

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Isometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 So 15.04.2007
Autor: felixf

Hallo!

> [a][Bild Nr. 1 (fehlt/gelöscht)]
>  Hallo liebe MAthe-Freaks,
>
> mit dieser Aufgabe komme ich auf keinen grünen Zweig, weil
> ich noch nicht mal die Aufgabe verstehe:-( geschweige denn
> die dazugehörigen Aufgabenstellungen :-(

Sorry, das ist ein wenig zu allgemein. Du musst schon etwas konkreter sein: was verstehst du nicht? Verstehst du die Definition von isometrisch? Verstehst du, warum [mm] $b_0$, [/mm] $b_+$ und $b_-$ Bilinearformen sind?

Bei (a) musst du jeweils Vektoren [mm] $v_1, v_2$ [/mm] fuer jedes Paar $(i, j)$ finden (abhaengig von einem gegebenen [mm] $\varphi$, [/mm] welches du nicht kennst!) so, dass die Isometrie-Gleichung nicht gilt. Zum Beispiel $i = 0$, $j = +$: dann ist [mm] $b_0(v_1, v_2) [/mm] = 0$ fuer alle [mm] $v_1, v_2$. [/mm] Wann ist [mm] $b_+(\varphi(v_1), \varphi(v_2)) [/mm] = 0$? Was bedeutet das fuer [mm] $v_1, v_2$? [/mm]

Bei (b) denk mal drueber nach, wie man Bilinearformen ueber Matrizen darstellt. Was macht ein Isomorphismus [mm] $\varphi$ [/mm] mit so einer Matrix hier? (Ueberleg dir erstmal, wie so ein Isomorphismus [mm] $\varphi [/mm] : [mm] \IR \to \IR$ [/mm] ueberhaupt aussieht.)

LG Felix


Bezug
                
Bezug
Isometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mo 16.04.2007
Autor: mathedepp_No.1

hallo felix,

erstmal vielen dank für die Hilfe.
Jetzt habe ich die Aufgabenstellung erstmal durchschaut! :-)
Aber leider weiß ich noch nicht genau wie ich das zeigen kann, kannst du vielleicht dein Beispiel fortführen?? Komm noch nicht ganz dahinter wie ich vorzugehen habe.

Weiß ein Isomorphismus ist eine bijektive lineare Abbindung, in diesem fall hier ist ja dann [mm] \phi [/mm] sogar ein bijektiver Endomorphismus, dessen darstellungsmatrix quadratisch ist, oder?
desweiteren weß man aus der bijektivität das jedes element des definitionsbereichs genau einem element des Wetrebereichs zugeordnet wird...

Hilfst du mir??? Bitte!!

Viele Grüße, mathedepp_No.1

Bezug
                        
Bezug
Isometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 17.04.2007
Autor: mathedepp_No.1

halo zusammen,


hat niemand zeit mir heir zu helfen...bin hier total am verzweifeln...weil ich nicht damit klar komme!!1


Hoffe auf Hilfe, viele Grüße, der mathedepp_No.1

Bezug
                        
Bezug
Isometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 18.04.2007
Autor: schachuzipus


> Weiß ein Isomorphismus ist eine bijektive lineare
> Abbindung

Hallo md,

ja das ist der entscheidende Satz!!

Wie sieht denn eine [mm] \emph{lineare} [/mm] Abbildung von [mm] \IR\rightarrow\IR [/mm] aus?

Das ist doch immer eine Gerade durch den Ursprung, also eine Abbildung [mm] $\phi:\IR\rightarrow\IR:\phi(x)=\alpha\cdot{} [/mm] x$ mit [mm] $\alpha\in\IR$ [/mm]

Nimm mal an, es gäbe so eine Isometrie mit [mm] $b(v,w)=b(\phi(v),\phi(w))$ [/mm]

Dann kannst du mal die Eigenschaft von [mm] \phi [/mm] in [mm] $b(\phi(v),\phi(w))$ [/mm] einsetzen und dann die Bilinearität von $b$ ausnutzen.

Dann siehst du, worauf es hinaus läuft.

Kommste damit weiter?

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]