matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIsomorphie der \IZ/\pIZ Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Isomorphie der \IZ/\pIZ Gruppe
Isomorphie der \IZ/\pIZ Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie der \IZ/\pIZ Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Do 08.02.2007
Autor: hanesy

Hallo ihr alle,

Ich habe mal eine allgemeine Frage:

Wann ist eine Gruppe
[mm] \IZ/a\IZ [/mm] isomorph zu [mm] \IZ/p_{1}\IZ \times ....\times \IZ/p_{n}\IZ, [/mm] wobei [mm] p_{j} [/mm] die Prinfaktorzerlegung von a sein soll ???

In unserem Skriptwird das für den Fall 15 (mit 5 und 3) einfach so benutzt. Aber für 4 (mit 2 und 2) klappt das meiner Meinung nach nicht !
Würde mich freuen wenn mit jemand etwas Erleuchtung brigen könnte!
Viele Grüße
Hannes

        
Bezug
Isomorphie der \IZ/\pIZ Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 08.02.2007
Autor: Volker2

Hallo Hannes,

die Sache ist ganz einfach: Es gilt

[mm] \IZ/a\IZ \cong \IZ/p^{e_1}_{1}\IZ \times ....\times \IZ/p^{e_n}_{n}\IZ, [/mm]

falls [mm] a=p^{e_1}_{1}\cdot \ldots\cdot p^{e_n}_{n} [/mm] die Primfaktorzerlegung von a ist.
  
Volker

Bezug
                
Bezug
Isomorphie der \IZ/\pIZ Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Do 08.02.2007
Autor: hanesy

Danke für die fixe Antwort, aber ich frag noch einmal nach, damit ich mir absolut sicher bin ;) :

Ist denn
[mm] \IZ/4\IZ \cong \IZ/2\IZ \times \IZ/2\IZ [/mm] richtig ??
Ich erinnere mich dunkel daran, dass in einer Übungsaufgabe einmal widerlegt zu haben, da die rechte Seite im Gegensatz zur linken nicht zyklisch ist!?


Bezug
                        
Bezug
Isomorphie der \IZ/\pIZ Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 08.02.2007
Autor: Volker2

Genau: [mm] \IZ/4\IZ\not\cong \IZ/2\IZ\times \IZ/2\IZ. [/mm] Volker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]