matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenIsomorphismus in R^2
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Isomorphismus in R^2
Isomorphismus in R^2 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus in R^2: Berechnung der Umkehrfunktion
Status: (Frage) beantwortet Status 
Datum: 17:21 Fr 03.08.2007
Autor: neuling_hier

Aufgabe
Gegeben sei folgender Isomorphismus:

  [mm] $\sigma: \IR^2 \rightarrow \IR^2 [/mm] , [mm] (\lambda_1, \lambda_2) \mapsto (\lambda_1 [/mm] + [mm] \lambda_2 [/mm] , [mm] \lambda_1 [/mm] - [mm] \lambda_2)$. [/mm]

Berechnen Sie die Umkehrfunktion [mm] $\sigma^{-1}$. [/mm]

Hallo liebes Forum,

Zu der o.g. "Aufgabe" (es ist nur ein Problem meinerseits in Aufgabenform ;-) ) habe ich mir überlegt, daß [mm] $\sigma^{-1}$ [/mm] wie folgt aussieht:

  [mm] $\sigma^{-1}: \IR^2 \rightarrow \IR^2 [/mm] , [mm] (\lambda_1, \lambda_2) \mapsto (\frac{\lambda_1 + \lambda_2}{2} [/mm] , [mm] \frac{\lambda_1 - \lambda_2}{2})$. [/mm]

Überlegt habe ich es mir aber nur an Beispielwerten (also schlecht):

  [mm] $\sigma(7,3) [/mm] = (10,4)$ und [mm] $\sigma^{-1}(10,4) [/mm] = (7,3)$,
  [mm] $\sigma(2,3) [/mm] = (5,-1)$ und [mm] $\sigma^{-1}(5,-1) [/mm] = (2,3)$,
  ... usw.

Frage: Wie rechne ich die Umkehrfunktion "allgemein" aus (ohne Beispielwerte)? Was mache ich z.B. im Fall [mm] $\sigma [/mm] : [mm] \IR^4 \rightarrow \IR^5$ [/mm] ?

Muß ich dazu ein Gleichungssystem aufstellen?

Momentan sehe ich vermutlich den Wald vor lauter Bäumen nicht, darum wäre ich Euch für eine Hilfe super dankbar !!! (Prima wäre, falls jemand mir den allgemeinen Rechenweg am Beispiel erklären könnte) :-)

        
Bezug
Isomorphismus in R^2: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Fr 03.08.2007
Autor: korbinian

Hallo
am besten stellst du den Isomorphismus durch eine Matrix (bzgl. der kanonischen Basis) dar. Dann wird die Umkehrabbildung durch die inverse Matrix dargestellt. In deinem Beispiel:
[mm] \sigma(\vektor{1 \\0})=\vektor{1 \\1} [/mm]
[mm] \sigma(\vektor{0 \\ 1})=\vektor{1 \\ -1} [/mm]
Also wird [mm] \sigma [/mm] durch die Matrix [mm] A=\pmat{ 1 & 1 \\ 1 & -1 } [/mm] dargestellt.

[mm] \sigma^{-1} [/mm] wird also durch [mm] A^{-1}=\bruch{1}{2}\pmat{ 1 & 1 \\ 1 & -1 } [/mm] dargestellt.
Da [mm] \bruch{1}{2}\pmat{ 1 & 1 \\ 1 & -1 } \vektor{\lambda_1 \\\lambda_2}=\bruch{1}{2}\vektor{\lambda_1 +\lambda_2\\\lambda_1-\lambda_2} [/mm] ist hat [mm] \sigma^{-1} [/mm] die von dir angegebene Form.

> Was mache ich z.B. im Fall [mm]\sigma : \IR^4 \rightarrow \IR^5[/mm]

Da brauchst du dir keine Sorgen machen, denn hier gibt es keinen Isomorphismus (Dimensionsgründe!). Bei gleichdimensionalen, höheren Vektorräumen kann obige Methode angewendet werden.
Gruß korbinian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]