matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeIsomorphismus zw. Vektorräumen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Isomorphismus zw. Vektorräumen
Isomorphismus zw. Vektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus zw. Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Sa 03.02.2007
Autor: Rian

Aufgabe
Sei $V$ ein m-dimensionaler Unterraum von [mm] $K^n$, [/mm] K ein Körper. Zeigen Sie, dass es natürliche Zahlen [mm] $v_{1}, [/mm] ... , [mm] v_{m}$ [/mm] aus ${1,2, ... ,n}$ gibt, so dass die lineare Abbildung
$V [mm] \rightarrow K^m, (x_{1}, [/mm] ... [mm] ,x_{n}) \rightarrow (x_{v_{1}}, [/mm] ... [mm] ,x_{v_{m}})$ [/mm]
ein Isomorphismus ist.

Hi,
soweit ich weiß, ist eine lineare Abbildung zwischen Vektorräumen immer ein Homomorphismus, d.h. ich müsste nur noch zeigen, dass die Abbildung für gewisse natürliche Zahlen bijektiv ist. Leider fällt mir aber nix mehr dazu ein, ich meine, es ist schon klar, dass man zeigen muss dass injektiv und surjektiv, aber weiß halt nicht wie.
Bitte um Hilfe
Danke
Rian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Isomorphismus zw. Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Sa 03.02.2007
Autor: straussy

Du musst dir eine Basis in V und K definieren und dann die Basiselemente aufeinander abbilden. Davon die lineare Fortsetzung ist dein Isomorphismus.

Straussy

Bezug
                
Bezug
Isomorphismus zw. Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Sa 03.02.2007
Autor: Rian

Was meinst du mit lineare Fortsetzung? Der Begriff ist mir nicht bekannt. Wie definiere ich denn in diesem Fall genau eine Basis?
Gruß
Rian

Ich habe diese Frage in keinem anderen Internetforum gestellt

Bezug
                        
Bezug
Isomorphismus zw. Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Sa 03.02.2007
Autor: angela.h.b.


>  Wie definiere ich denn in diesem Fall genau
> eine Basis?

Hallo,

nach Voraussetzung ist ja der Vektorraum V ein m-dimensionaler Unterraum des [mm] K^n. [/mm]

Das heißt, er hat eine Basis  [mm] (b_1,...,b_m). [/mm]

Da V ein Unterraum des [mm] K_n [/mm] ist, kann diese Basis durch Vektoren [mm] b_{m+1},..., b_n [/mm] fortgesetzt werden zu einer Basis des [mm] K_n. [/mm]

Bezüglich dieser Basis haben alle x [mm] \in [/mm] V [mm] \substeq K^n [/mm] die Gestalt [mm] x=\vektor{x_1 \\ ...\\ x_m \\ 0 \\ ... \\0}_B [/mm]

Eine lineare Abbildung von einem Vektorraum in den andern ist eindeutig beschrieben durch ihr Bild auf einer Basis.
Für einen Isomorphismus mußt Du nun die Basis von V auf eine Basis von [mm] K^m [/mm] abbilden.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]