matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenIst die Abbildung linear?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Ist die Abbildung linear?
Ist die Abbildung linear? < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist die Abbildung linear?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:39 Mi 14.01.2009
Autor: ownshake

Aufgabe
Welche der folgenden Abbildungen ist linear?
(a) [mm] \alpha: \IR^3 \to \IR^2; (x,y,z)^t \mapsto [/mm] (xy, [mm] x+y)^t [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo :)

Also irgendwie kann ich mit der Aufgabe sorecht noch nichts anfangen. Ich habe mich dann mal versucht im Internet schlau zu machen, aber so richtig was gebracht hat es mir nicht.
Ich erzähl mal kurz was ich herrausgefunden habe:

Also um zu prüfen, ob eine Funktion linear ist führt man 2 Schritte durch:

1) f(a+b) = f(a)+f(b)
2) [mm] f(\lambda [/mm] a) = [mm] \lambda [/mm] f(a)

das habe ich jetzt mal versucht auf meine Aufgabe anzuwenden.
Ich schreibe mal hier auf wie ich Punkt 2) berrechnet habe:

[mm] f(\lambda [/mm] a) = [mm] f(\lambda [/mm] (x,y,z))
= [mm] f(\lambda [/mm] x, [mm] \lambda [/mm] y, [mm] \lambda [/mm] z)
= [mm] f(\lambda [/mm] x * [mm] \lambda [/mm] y , [mm] \lambda [/mm] x + [mm] \lambda [/mm] y)
Dann habe ich [mm] \lambda [/mm] ausgeklammert:
= [mm] \lambda*f(\lambda [/mm] xy , x+y)
und das ist ungleich:
[mm] \not= \lambdaf(a) [/mm] = [mm] \lambda [/mm] f(xy, x+y)

Ist das soweit richtig? und was bedeutet das [mm] ()^t [/mm] hinter der Klammer? Ich weiss garnicht wie das hoch t zu behandeln ist? Kann mir vielleicht jemand helfen?
Wäre sehr dankbar für Antwort
Grüße


        
Bezug
Ist die Abbildung linear?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 14.01.2009
Autor: angela.h.b.


> Welche der folgenden Abbildungen ist linear?
>  (a) [mm]\alpha: \IR^3 \to \IR^2; (x,y,z)^t \mapsto[/mm] (xy,
> [mm]x+y)^t[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo :)
>  
> Also irgendwie kann ich mit der Aufgabe sorecht noch nichts
> anfangen. Ich habe mich dann mal versucht im Internet
> schlau zu machen, aber so richtig was gebracht hat es mir
> nicht.

Hallo,

[willkommenmr].

Doch, das Schlaumachen hat Dir etwas gebracht!

> Also um zu prüfen, ob eine Funktion linear ist führt man 2
> Schritte durch:
>  
> 1) f(a+b) = f(a)+f(b)   für alle a,b
>  2) [mm]f(\lambda[/mm] a) = [mm]\lambda[/mm] f(a)  für all a und für alle [mm] \lambda. [/mm]

>  
> das habe ich jetzt mal versucht auf meine Aufgabe
> anzuwenden.
>  Ich schreibe mal hier auf wie ich Punkt 2) berrechnet
> habe:

Sei [mm] a:=\vektor{x\\y\\z}. [/mm]

Zu zeigen ist nun, daß für jedes [mm] ļambda\in \IR [/mm] gilt  [mm] f(\lambda(a))=\lambda [/mm] f(a).

Es ist

>  
> [mm]f(\lambda[/mm] a) = [mm]f(\lambda[/mm] (x,y,z))
>  = [mm]f(\lambda[/mm] x, [mm]\lambda[/mm] y, [mm]\lambda[/mm] z)
>  = [mm]f(\lambda[/mm] x * [mm]\lambda[/mm] y , [mm]\lambda[/mm] x + [mm]\lambda[/mm] y)
>  Dann habe ich [mm]\lambda[/mm] ausgeklammert:
>  = [mm]\lambda*f(\lambda[/mm] xy , x+y)
>  und das ist ungleich:
>  [mm]\not= \lambda f(a)[/mm] = [mm]\lambda[/mm] f(xy, x+y)
>  
> Ist das soweit richtig?

Ja.

>  und was bedeutet das [mm]()^t[/mm] hinter
> der Klammer?

Transponiert. Daß das also Spaltenvektoren sind.

Gruß v. Angela


Ich weiss garnicht wie das hoch t zu behandeln

> ist? Kann mir vielleicht jemand helfen?
>  Wäre sehr dankbar für Antwort
>   Grüße
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]