matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIst meine Vermutung richtig ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Ist meine Vermutung richtig ?
Ist meine Vermutung richtig ? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist meine Vermutung richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Di 06.12.2005
Autor: philipp-100

Hallo,

die Aufgabenstellung lautet
Bestimme diejenige Ursprungsgrade , die den durch die 1Achse und durch
[mm] y=-x^2+6x [/mm] bestimmten Parabelabschnitt in zwei Teilflächen mit gleicher Fläche zerlegt.

Mein Ansatz

t=mx
[mm] y=-x^2+6x [/mm]
Nullstellen bestimmt :

0 und 6
und dann den Schnittpunkt beider Grafen .

0 und 6-m

dann habe ich das Integral von [mm] -x^2+6x [/mm] vo 0 bis 6 genommen und durch 2 geteilt =A/2 =18

und dann habe ich nochmal integriert:
und zwar habe ich

die Fläche von mx von 0 bis 6-m genommen plus die Fläche von [mm] -x^2+6x [/mm] von 6-m bis 6


jetzt habe ich aber :

[mm] m^3-30m^2+9m=18 [/mm] raus

das kann aber nicht sein :

Ist mein Lösungsweg richtig ??

        
Bezug
Ist meine Vermutung richtig ?: Ansatz stimmt soweit!
Status: (Antwort) fertig Status 
Datum: 09:03 Mi 07.12.2005
Autor: Loddar

Guten Morgen Philipp!


> t=mx
> [mm]y=-x^2+6x[/mm]
> Nullstellen bestimmt : 0 und 6

[ok]


> und dann den Schnittpunkt beider Grafen . 0 und 6-m

[ok]


> dann habe ich das Integral von [mm]-x^2+6x[/mm] vo 0 bis 6 genommen
> und durch 2 geteilt =A/2 =18

[ok]

  

> die Fläche von mx von 0 bis 6-m genommen plus die Fläche
> von [mm]-x^2+6x[/mm] von 6-m bis 6

[ok] Alternativ hättest Du auch nehmen können:

[mm] $A_{neu} [/mm] \ = \ [mm] \integral_{0}^{6-m}{-x^2+6x-m*x \ dx} [/mm] \ = \ 18$


> jetzt habe ich aber :
> [mm]m^3-30m^2+9m=18[/mm] raus

Hier musst Du Dich irgendwo verrechnet haben ... es muss ja irgendwo noch der Faktor [mm] $\bruch{1}{3}$ [/mm] vor dem [mm] $m^3$ [/mm] auftreten.


Leider finde ich auf den frühen Morgen auch nicht den Fehler (bzw. erhalte ein vernünftiges Ergebnis). [peinlich]


Gruß
Loddar


Bezug
        
Bezug
Ist meine Vermutung richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Mi 07.12.2005
Autor: taura

Hallo Phillipp!

Ich hab für Loddars Integral folgendes raus:

[mm] $\br{1}{6}m^3+3m^2-18m+36$ [/mm]

Hoffe, das stimmt...

Gruß taura

Bezug
                
Bezug
Ist meine Vermutung richtig ?: Danke, aber ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Mi 07.12.2005
Autor: Loddar

Hallo taura!


Danke ... jetzt hatte ich das auch raus, zumindest fast ;-) ... !

Es muss allerdings heißen: [mm] $\red{-}\bruch{1}{6}m^3+3m^2-18m+36 [/mm] \ = \ 18$


Und umgeformt / faktorisiert ergibt das:  $... \ = \ [mm] \bruch{1}{6}*(6-m)^3 [/mm] \ = \ 18$


Damit sollte sich nun $m_$ ziemlich schnell ermitteln lassen.


Gruß
Loddar


Bezug
                        
Bezug
Ist meine Vermutung richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 Do 08.12.2005
Autor: philipp-100

Hey Loddar,

ich habe bei der Umformung [mm] (6-m)^3=18 [/mm] raus.
Gruß

Philipp

Bezug
                                
Bezug
Ist meine Vermutung richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Fr 09.12.2005
Autor: R4ph43l

Dann hast du das Integral falsch berechnet, überprüfe das nochmal:

[mm] {\integral_{0}^{6-m}{-x^2+6x-mx \ dx} = -\bruch{1}{3}x^3 + 3x^2 - \bruch{m}{2}x^2 \ |^{ 6-m }_{ 0 } = -\bruch{1}{6}m^3 + 3m^2 - 18m + 36 =} [/mm] ... die Umformung zur Form von Loddar sollte dann nicht weiter schwer sein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]