matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenJordan-Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Jordan-Basis
Jordan-Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan-Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Di 16.06.2015
Autor: Katti1712

Aufgabe
Sei V = [mm] K^{mxn} [/mm] der Vektorraum der mxn-Matrizen. Seien [mm] A\in K^{mxm} [/mm] und C [mm] \in K^{nxn} [/mm] nilpotente Matrizen der Ordnung i bzw. j.
Also [mm] A^i [/mm] = 0, aber [mm] A^{i-1} \not= [/mm] 0. Definiere  [mm] L_A: V\to [/mm] V und [mm] R_C: V\to [/mm] V durch [mm] L_A*B [/mm] := AB (Links-Multipliaktion mit A) bzw. [mm] R_C*B [/mm] = BC (Rechts-Multiplikation mit C).
Setze [mm] M_A,_C [/mm] := [mm] L_A\circ R_C [/mm] = [mm] R_C \circ L_A. [/mm]


In dieser Notation sei m=n=3 und

[mm] A=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0} [/mm]

[mm] C=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0} [/mm]

Bestimme eine Jordan-Basis von V = [mm] K^{3x3} [/mm] bzgl. [mm] M_A,_C. [/mm] Hinweis: Die EInheits-Basisvektoren von V haben nur zwei Indizes.

Hallo,

also wie man mit einer Matrix die Jordan-Basis bestimmt weiß ich.

Aber hier habe ich ja zwei Jordan-Normalformen, mit denen ich eine Jordan-Basis bestimmen soll.
Sei B eine beliebige nilpotente Matrix.
Dann ergibt sich die Jordan-Basis zum Beispiel so:
[mm] \{e_1,(B-E)*e_1, (B-E)^2*e_1\}, [/mm] wenn man dann die Jordan-Normalform ausrechnet, bekommt man eine 3x3 Matrix, wo in der Diagonalen nur 0en stehen und unter der Diagonalen 1en.
Dreht man dies um, also:
[mm] \{(B_E)^2*e_1,(B-E)*e_1,e_1\} [/mm] erhält man eine Jordan-Normalform, wo in der Diagonalen wieder nur 0en stehen und über Diagonalen 1en.

Deshalb gehe ich davon aus das A und C die selben Basis-Vektoren haben.

Aber wenn ich ehrlich bin, komme ich mit der Notation nicht weiter. Ich verstehe den Zusammenhang mit diesem [mm] L_A [/mm] und [mm] R_C [/mm] nicht.
Ich wäre froh, wenn mir hier jemand weiter helfen könnte!

Lieben Gruß

Katrin

        
Bezug
Jordan-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Mi 17.06.2015
Autor: fred97


> Sei V = [mm]K^{mxn}[/mm] der Vektorraum der mxn-Matrizen. Seien [mm]A\in K^{mxm}[/mm]
> und C [mm]\in K^{nxn}[/mm] nilpotente Matrizen der Ordnung i bzw.
> j.
>  Also [mm]A^i[/mm] = 0, aber [mm]A^{i-1} \not=[/mm] 0. Definiere  [mm]L_A: V\to[/mm] V
> und [mm]R_C: V\to[/mm] V durch [mm]L_A*B[/mm] := AB (Links-Multipliaktion mit
> A) bzw. [mm]R_C*B[/mm] = BC (Rechts-Multiplikation mit C).
>   Setze [mm]M_A,_C[/mm] := [mm]L_A\circ R_C[/mm] = [mm]R_C \circ L_A.[/mm]
>  
>
> In dieser Notation sei m=n=3 und
>
> [mm]A=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0}[/mm]
>  
> [mm]C=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0}[/mm]
>  
> Bestimme eine Jordan-Basis von V = [mm]K^{3x3}[/mm] bzgl. [mm]M_A,_C.[/mm]
> Hinweis: Die EInheits-Basisvektoren von V haben nur zwei
> Indizes.
>  Hallo,
>  
> also wie man mit einer Matrix die Jordan-Basis bestimmt
> weiß ich.
>  
> Aber hier habe ich ja zwei Jordan-Normalformen, mit denen
> ich eine Jordan-Basis bestimmen soll.
> Sei B eine beliebige nilpotente Matrix.
> Dann ergibt sich die Jordan-Basis zum Beispiel so:
>  [mm]\{e_1,(B-E)*e_1, (B-E)^2*e_1\},[/mm] wenn man dann die
> Jordan-Normalform ausrechnet, bekommt man eine 3x3 Matrix,
> wo in der Diagonalen nur 0en stehen und unter der
> Diagonalen 1en.
>  Dreht man dies um, also:
>  [mm]\{(B_E)^2*e_1,(B-E)*e_1,e_1\}[/mm] erhält man eine
> Jordan-Normalform, wo in der Diagonalen wieder nur 0en
> stehen und über Diagonalen 1en.
>  
> Deshalb gehe ich davon aus das A und C die selben
> Basis-Vektoren haben.
>  
> Aber wenn ich ehrlich bin, komme ich mit der Notation nicht
> weiter. Ich verstehe den Zusammenhang mit diesem [mm]L_A[/mm] und
> [mm]R_C[/mm] nicht.
>  Ich wäre froh, wenn mir hier jemand weiter helfen
> könnte!

Ich versuche es mal. Statt  [mm]M_A,_C[/mm] schreibe ich $T$.

$T$ ist eine Abbildung $T: [mm] K^{3x3} \to K^{3x3} [/mm] $, die mit den obigen Matrizen $A$ und $C$ wie folgt def. ist:

   $T(B):=ABC$.

$T$ ordnet also jeder(!) Matrix $B [mm] \in K^{3x3} [/mm] $ die Matrix $ABC$ zu.

Der Raum $ [mm] K^{3x3} [/mm] $ hat die Dimension 9. Gesucht ist also einen Basis [mm] \mathcal{B} [/mm] von $ [mm] K^{3x3} [/mm] $, derart, dass die Abbildungsmatrix von $T$ bezüglich [mm] \mathcal{B} [/mm] Jordannormalform hat.  [mm] \mathcal{B} [/mm] hat 9 Elemente !

FRED

Statt

>  
> Lieben Gruß
>  
> Katrin  


Bezug
                
Bezug
Jordan-Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Mi 17.06.2015
Autor: Katti1712

Hallo Fred,

super vielen Dank für deine Hilfe!!
Ich denke, dass ich jetzt auf die richtige Lösung gekommen bin.

Lieben Gruß

Katrin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]