matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraJordan Normalform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Jordan Normalform
Jordan Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Normalform: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:24 So 18.09.2005
Autor: Haeslein

Hallo,

ich bin gerade dabei einige Beispiele zur JNF und der Darstellungsform A = [mm] S^{-1}JS [/mm] durchzugehen. Dabei bin ich auf folgende Aufgaben gestoßen: http://www.danielwinkler.de/la/jnfkochrezept.pdf

Dazu habe ich nun eine weiterführende Frage:

Angenommen bei der Aufgabe auf Seite 4 hätte ich eine (4x4)-Matrix A über [mm] \IR [/mm] und das charakteristische Polynom wäre von der Form [mm] (X-µ)^4 [/mm] mit µ ist einziger Eigenwert von A. Dann würde ich zunächst die Potenzen von (A-µ*ID) berechnen. Nehmen wir weiter an, dass der Kern von (A-µ*Id)³ ganz [mm] \IR^4 [/mm] aufspannt, wobei Ker(A-µ*Id)² = [mm] [/mm] sein soll.

Wie würde ich dann eine JNF-Basis bestimmen, wenn ich auf die gleiche Art und Weise vorgehe wie es ansonsten in der Aufgabe angewendet wurde?

Müsste ich einen Vektor [mm] \vec{x} [/mm] wählen, der [mm] \in [/mm] Ker(A-µ*Id)³ \ Ker(A-µ*Id)² ist und dann wie in der Aufgabe (A-µ*Id) * [mm] \vec{x} [/mm] und (A-µ*Id)² * [mm] \vec{x}, [/mm] wobei ich dann nur 3 Vektoren in der Basis hätte, ich aber 4 benötige? Muss ich diese 3 dann um einen vierten unabhängigen aus ergänzen und wenn ja, woher nehme ich diesen? Oder muss ich von vorne herein 2 unabhängige Vektoren aus Ker(A-µ*Id)³ \ Ker(A-µ*Id)² wählen und den obigen Vorgang wiederholen, um dann am Ende von den erhaltenen 6 Vektoren 2 zu streichen, die linear abhängig zu den restlichen sind?


Wäre lieb, wenn sich mal jemand meinem Problem annehmen könnte.


Liebe Grüße
Jasmin


Diese Frage wurde in keinem anderen Forum gestellt.

        
Bezug
Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 So 18.09.2005
Autor: SEcki


> Angenommen bei der Aufgabe auf Seite 4 hätte ich eine
> (4x4)-Matrix A über [mm]\IR[/mm] und das charakteristische Polynom
> wäre von der Form [mm](X-µ)^4[/mm] mit µ ist einziger Eigenwert von
> A. Dann würde ich zunächst die Potenzen von (A-µ*ID)
> berechnen. Nehmen wir weiter an, dass der Kern von
> (A-µ*Id)³ ganz [mm]\IR^4[/mm] aufspannt, wobei Ker(A-µ*Id)² =
> [mm][/mm] sein soll.

Die gibt's du mir mal an, die Matrix. Die existiert wohl nicht - es gibt einen Vektor mit Jordankästchen 3, dann bleibt noch ein "fehlender" EV übrig, das forciert allerdings schon [m]dim(Ker(A-µ*Id)^2)=2[/m].

> Wie würde ich dann eine JNF-Basis bestimmen, wenn ich auf
> die gleiche Art und Weise vorgehe wie es ansonsten in der
> Aufgabe angewendet wurde?

Auf genau die Weise, wie in der aufgabe angegebn .. wo ist das Problem?

> Müsste ich einen Vektor [mm]\vec{x}[/mm] wählen, der [mm]\in[/mm]
> Ker(A-µ*Id)³ \ Ker(A-µ*Id)² ist und dann wie in der Aufgabe
> (A-µ*Id) * [mm]\vec{x}[/mm] und (A-µ*Id)² * [mm]\vec{x},[/mm] wobei ich dann
> nur 3 Vektoren in der Basis hätte, ich aber 4 benötige?

Das ist ja blos der Anfang - dann muss man weitermachen, bis man eine Basis hat!

> Muss ich diese 3 dann um einen vierten unabhängigen aus
> ergänzen

Genau. Es fehlt ein EV.

>  und wenn ja, woher nehme ich diesen?

Aus [m]Ker(A-\my*E)[/m].

SEcki

Bezug
                
Bezug
Jordan Normalform: kurze Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:27 Do 22.09.2005
Autor: Haeslein

Hallo,

danke schon mal für die Antwort, auch wenn sie nicht sonderlich ausführlich war. ;-)

Ist es denn egal, woher ich meinen vierten linear unabhängigen Vektor nehme, solange er überhaupt unabhängig zu den restlichen drei ist oder muss er unbedingt aus Ker(A-µ*Id) sein?


Gruß
Jasmin

Bezug
                        
Bezug
Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Fr 23.09.2005
Autor: SEcki


> Ist es denn egal, woher ich meinen vierten linear
> unabhängigen Vektor nehme, solange er überhaupt unabhängig
> zu den restlichen drei ist oder muss er unbedingt aus
> Ker(A-µ*Id) sein?

Zweiteres - sonst kann man ja nach basiswechsel keine JNF erhalten (Logischerweise). Das ist es doch, worum es geht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]