matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisJulia Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Complex Analysis" - Julia Mengen
Julia Mengen < Complex Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ all forums  | ^ Tree of Forums  | materials

Julia Mengen: Fraktal
Status: (Question) answered Status 
Date: 14:24 Fr 10/04/2015
Author: miamaria

Hallo!

Ich versuche gerade zu beweisen, warum Julia-Mengen Fraktale sind. Allerdings stoße ich bei meiner Recherche immerwieder auf die Begründung, dass Julia-Mengen Ränder von Attraktionsgebieten sind. Dies stellt mich aber nicht zufrieden. Sollte ich den Zugang über die fraktale Dimension der Julia-Mengen wagen oder hätte jemand einen anderen Vorschlag?
Vielen dank für jegliche Hilfe im Voraus
m

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Julia Mengen: Antwort
Status: (Answer) finished Status 
Date: 07:33 Mo 13/04/2015
Author: Ladon

Hallo miamaria,

jede Menge mit nicht - ganzzahliger Dimension ist ein Fraktal.
Nun hat die Julia Menge eine nicht-ganzzahlige  Dimension $>1$ ([]siehe hier).
Die Berechnung ist allerdings nicht ganz so einfach. Vielleicht hilft dir diese []Linksammlung auf stackexchange.
Bitte beachte, dass ich von [mm] $f(z)=z^2+c [/mm] $ ausgegangen bin.

MfG
Ladon

EDIT: Links repariert.

Bezug
                
Bezug
Julia Mengen: Mitteilung
Status: (Statement) No reaction required Status 
Date: 09:13 Mo 13/04/2015
Author: Gonozal_IX

Hallo Ladon,

> jede Menge mit nicht - ganzzahliger Dimension ist ein Fraktal.

Ja, aber die Umkehrung gilt eben nicht.

> Nun hat die Julia Menge eine nicht-ganzzahlige  Dimension

Es gibt ja nicht "die" Julia-Menge, sondern unzählig viele.

Bspw. ist der Einheitskreis für [mm] $d\ge [/mm] 2$ auch eine Julia-Menge. Und ist der Einheitskreis nun ein Fraktal oder nicht.....

Gruß,
Gono

Bezug
                        
Bezug
Julia Mengen: Mitteilung
Status: (Statement) No reaction required Status 
Date: 10:52 Mo 13/04/2015
Author: Ladon

Hallo Gono,

du hast Recht. Ich bin von der Julia Menge ausgegangen, die ich bereits kannte (insbesondere $c=1/4$).
Mir ist klar, dass die Umkehrung nicht gilt. ;-)
Dennoch: vielen Dank für die Hinweise.
Ich habe obigen Hinweis mal in meine Antwort eingebaut.

LG
Ladon

Bezug
        
Bezug
Julia Mengen: Antwort
Status: (Answer) finished Status 
Date: 09:12 Mo 13/04/2015
Author: Gonozal_IX

Hiho,

> Ich versuche gerade zu beweisen, warum Julia-Mengen Fraktale sind.

wie definierst du denn Fraktale?
Das ist ja schon mal nicht einheitlich definiert und auch essentiell wichtig.....

Gruß,
Gono

Bezug
                
Bezug
Julia Mengen: antwort1
Status: (Frage) überfällig Status 
Date: 11:22 Mo 13/04/2015
Author: miamaria

Also ich definiere Fraktale über die Dimension, also so wie Mandelbrot: ein Fraktal ist eine Menge, deren Hausdorff-Besicovitch-Dimension echt die topologische übersteigt. also eben auch wenn die Dimension gebrochen ist.

Verstehe ich das richtig, wenn ich zeigen kann dass Julia-Mengen (nicht alle) eine nicht ganzzahlige Dimension haben, dann sind diese Fraktale? Oder muss ich noch etwas anderes beachten? Der Spezialfall vom Einheitskreis ist mir bereits bekannt.

Bezug
                        
Bezug
Julia Mengen: Fälligkeit abgelaufen
Status: (Statement) No reaction required Status 
Date: 12:20 Mi 15/04/2015
Author: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
View: [ threaded ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]