matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesK \in \IF_{9}
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - K \in \IF_{9}
K \in \IF_{9} < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

K \in \IF_{9}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 So 15.12.2013
Autor: nullahnung2217

Aufgabe
Was ist z.b. -2-i in [mm] \IF_{9}? [/mm]

Hallo,
ich verstehe [mm] \IF_{9} [/mm] noch nicht. Es handelt sich dabei soweit ich weiß ja um einen Restklassekörper. Ich hab mir dazu auch schon verschiedene Erklärungen im Internet angeschaut aber ohne Ergebnis. So wie ich es verstanden habe handelt es sich um die Restklassen der Polynome [mm] \mod X^{2}+1. [/mm] Also ist:
[mm] \IF_{9}=\{0,1,2,X,X+1,X+2,2X,2X+1,2X+2\} [/mm]

Also was ist dann z.b. auch [mm] \bruch{1}{4} [/mm] - [mm] \bruch{1}{4}i [/mm] in [mm] \IF_{9}? [/mm]
Oder das Beispiel oben?
Vielen Dank für eure Hilfe.

        
Bezug
K \in \IF_{9}: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Mo 16.12.2013
Autor: reverend

Hallo,

vorab: schau mal hier, da ging es auch um [mm] \IF_9. [/mm]

> Was ist z.b. -2-i in [mm]\IF_{9}?[/mm]

Die Frage ist nicht geschickt gestellt. -2-i gehört aber immerhin zur gleichen Restklasse wie 1+2i, wenn Dir das weiterhilft.

>  Hallo,
>  ich verstehe [mm]\IF_{9}[/mm] noch nicht. Es handelt sich dabei
> soweit ich weiß ja um einen Restklassekörper. Ich hab mir
> dazu auch schon verschiedene Erklärungen im Internet
> angeschaut aber ohne Ergebnis. So wie ich es verstanden
> habe handelt es sich um die Restklassen der Polynome [mm]\mod X^{2}+1.[/mm]

Hm. Die Formulierung scheint mir auch nicht ganz korrekt. Lies mal den oben verlinkten Thread.

> Also ist:
>  [mm]\IF_{9}=\{0,1,2,X,X+1,X+2,2X,2X+1,2X+2\}[/mm]

Ja, doch. Das ist ok.

> Also was ist dann z.b. auch [mm]\bruch{1}{4}[/mm] - [mm]\bruch{1}{4}i[/mm] in
> [mm]\IF_{9}?[/mm]
> Oder das Beispiel oben?
> Vielen Dank für eure Hilfe.

Das Problem sind hier die Viertel. Wenn das nur heißt "Inverses von 4", dann ist [mm] \tfrac{1}{4}-\bruch{1}{4}i\equiv 1-i\equiv{1+2i} [/mm] - also aus der gleichen Restklasse wie Dein erstes Beispiel.

Grüße
reverend

Bezug
                
Bezug
K \in \IF_{9}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 Mo 16.12.2013
Autor: nullahnung2217

Danke für deine Erklärungen. Hab mit den Link und deine Erklärungen alle angeschaut.
Aber was ich noch nicht verstanden habe ist, wie komme ich darauf? Woher weiß ich, dass -2-i zur gleichen Restklasse wie 1+2i gehört? Wie komm ich da allein drauf? Was muss ich machen, um die Restklasse zu bestimmen?

Muss ich da auch jede Summanden getrennt betrachten?

Bezug
                        
Bezug
K \in \IF_{9}: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 16.12.2013
Autor: reverend

Hallo,

> Danke für deine Erklärungen. Hab mit den Link und deine
> Erklärungen alle angeschaut.
> Aber was ich noch nicht verstanden habe ist, wie komme ich
> darauf? Woher weiß ich, dass -2-i zur gleichen Restklasse
> wie 1+2i gehört? Wie komm ich da allein drauf? Was muss
> ich machen, um die Restklasse zu bestimmen?
>
> Muss ich da auch jede Summanden getrennt betrachten?  

Ja, das ist eine ganz gute Anschauung. Es ist am leichtesten zu verstehen, wenn man sich vorstellt, dass jede (gaußsche, also ganzzahlig komplexe) Zahl zu zwei Restklassen gehört, einer reellen und einer imaginären.

Dann funktioniert schonmal die Addition genauso, wie mans sonst von der Restklassenrechnung kennt. Ein Problem bei der Anschauung ist die Multiplikation. Durch die Repräsentation mit gaußschen Zahlen ist das eben einfach zu lösen, bei Deiner Variante mit Polynomen "sieht" man nicht so leicht, was das Ergebnis ist. Es funktioniert aber auch.

Z.B. [mm] (X+2)(2X+1)=2X^2+5X+2\equiv 5X\equiv 2X\bmod{(X^2+1)} [/mm]

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]