matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKapitel 2: Ringe und PolynomeKap. 2.1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kapitel 2: Ringe und Polynome" - Kap. 2.1
Kap. 2.1 < Kapitel 2: Ringe und < Algebra-Kurs 2006 < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kapitel 2: Ringe und Polynome"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kap. 2.1: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 13:59 Fr 17.11.2006
Autor: statler

Sei K ein Körper und g [mm] \in [/mm] K[X] ein Polynom einer Variablen vom Grad d > 0. Man beweise die Existenz der sogenannten g-adischen Entwicklung: Zu f [mm] \in [/mm] K[X] gibt es eindeutig bestimmte Polynome [mm] a_{0}, a_{1} [/mm] ... [mm] \in [/mm] K[X] vom Grad < d, [mm] a_{i} [/mm] = 0 für fast alle i, mit f = [mm] \summe_{i}{}a_{i}g^{i}. [/mm]



        
Bezug
Kap. 2.1: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 07.03.2007
Autor: comix

Sei grad(f) < d: [mm] a_{0} [/mm] := f.

Bew. mit Induktion über den Grad von f.

Sei grad(f) = d: Nach (2.1) Satz 4 gibt es [mm] a_{1}, a_{0} \in [/mm] K[X] mit

f = [mm] a_{1}g [/mm] + [mm] a_{0}, [/mm] grad [mm] (a_{0})
Sei nun grad(f) > d. Wähle n := max {i | i > 0 mit [mm] grad(g^{i}) \le [/mm] grad(f)}. Wieder nach Satz 4 gibt es [mm] a_{n} [/mm] und [mm] b_{n-1} [/mm] mit:

f = [mm] a_{n}g^{n} [/mm] + [mm] b_{n-1}, [/mm] grad( [mm] b_{n-1}) [/mm] < grad(f), [mm] a_{n}, b_{n-1} [/mm] eindeutig bestimmt. Nach IV (Induktionsvor.) gilt nun die Aussage für [mm] b_{n-1}: [/mm]

[mm] b_{n-1} [/mm] =  $ [mm] \summe_{i}{}a_{i}g^{i}. [/mm] $

Damit ist die Existenz gezeigt. Für die Eindeutigkeit genügt es zu zeigen, dass für alle i [mm] \ge [/mm] n die [mm] a_{i} [/mm] in der Summe für [mm] b_{n-1} [/mm] verschwinden. Wäre [mm] a_{i} \not= [/mm] 0 für i [mm] \ge [/mm] n, so wäre [mm] a_{i}g^{i} [/mm] ungleich 0 und damit [mm] grad(b_{n-1}) \ge [/mm] n. Widerspruch zur Aussage oben.

Zu gegebenem f sind [mm] a_{n} [/mm] und [mm] b_{n-1} [/mm] eindeutig bestimmt, zu [mm] b_{n-1} [/mm] sind [mm] a_{i} [/mm] eindeutig bestimmt, i < n. Somit ist die Aussage bewiesen.



Bezug
                
Bezug
Kap. 2.1: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Di 16.12.2008
Autor: statler

Hi!

> Sei grad(f) < d: [mm]a_{0}[/mm] := f.
>  
> Bew. mit Induktion über den Grad von f.
>  
> Sei grad(f) = d: Nach (2.1) Satz 4 gibt es [mm]a_{1}, a_{0} \in[/mm]
> K[X] mit

Leider habe ich das Buch nicht mehr zur Hand, aber ich hoffe mal, daß das Zitat stimmt.

> f = [mm]a_{1}g[/mm] + [mm]a_{0},[/mm] grad [mm](a_{0})
> bestimmt. (Induktionsanfang)
>  
> Sei nun grad(f) > d. Wähle $n := max [mm] \{i | i > 0 mit grad(g^{i}) \le grad(f)\}$. [/mm]
> Wieder nach Satz 4 gibt es [mm]a_{n}[/mm]
> und [mm]b_{n-1}[/mm] mit:
>  
> f = [mm]a_{n}g^{n}[/mm] + [mm]b_{n-1},[/mm] grad( [mm]b_{n-1})[/mm] < grad(f), [mm]a_{n}, b_{n-1}[/mm]
> eindeutig bestimmt. Nach IV (Induktionsvor.) gilt nun die
> Aussage für [mm]b_{n-1}:[/mm]
>  
> [mm]b_{n-1}[/mm] =  [mm]\summe_{i}{}a_{i}g^{i}.[/mm]
>  
> Damit ist die Existenz gezeigt. Für die Eindeutigkeit
> genügt es zu zeigen, dass für alle i [mm]\ge[/mm] n die [mm]a_{i}[/mm] in der
> Summe für [mm]b_{n-1}[/mm] verschwinden. Wäre [mm]a_{i} \not=[/mm] 0 für i
> [mm]\ge[/mm] n, so wäre [mm]a_{i}g^{i}[/mm] ungleich 0 und damit
> [mm]grad(b_{n-1}) \ge[/mm] n. Widerspruch zur Aussage oben.
>  
> Zu gegebenem f sind [mm]a_{n}[/mm] und [mm]b_{n-1}[/mm] eindeutig bestimmt,
> zu [mm]b_{n-1}[/mm] sind [mm]a_{i}[/mm] eindeutig bestimmt, i < n. Somit ist
> die Aussage bewiesen.

Sehr schön.

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kapitel 2: Ringe und Polynome"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]