matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKardinalzahlen/Mächtigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Kardinalzahlen/Mächtigkeit
Kardinalzahlen/Mächtigkeit < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kardinalzahlen/Mächtigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Mi 22.05.2013
Autor: Lu-

Aufgabe
Zeigen Sie
[mm] |\IN| [/mm] = [mm] |\IQ| [/mm]
(Sie können  Cantor-Schröder-Bernstein verwenden, nicht in formaler Mengenlehre ZFC sondern in "Alltagsmathematik")


Hallo, ich scheitere bei einer (relativ einfachen) Aufgabe.

-) [mm] |\IQ| \ge |\IN| [/mm] mit f(n)=n eine Injektion

-) [mm] |\IQ| \le |\IN| [/mm]
Kam ich nicht wirklich weiter. Hab im Internet nachgeschaut und da steht:

s [mm] \in \IQ: [/mm] s= p/q mit p [mm] \in \IZ [/mm] und q [mm] \in \IN [/mm] ohne 0 ggT(p,q)=1
g(p/q)= [mm] \begin{cases} (|p|,|q|), & \mbox{für } p/q \ge 0 \\(2|p|,2|q|), & \mbox{für } p/q <0 \end{cases} [/mm]
J [mm] \circ [/mm] g : [mm] \IQ [/mm] -> [mm] \IN [/mm] injektiv als Zusammensetzung injektiver Funktionen wobei J die Cantorsche Paarungsfunktion ist.

Nun, ich wäre nie auf das g draufgekommen.. Wie kann man da von selbst draufkommen? Warum gilt Injektivität beim Betrag?

Seien s,a [mm] \in \IQ [/mm] d.h. s= p/q, a=r/t mit ggT(p,q)=1 und ggT(r,t)=1
Angenommen: g(p/q)= g(r/t)
ZZ.:  s= a  d.h. p=r [mm] \wedge [/mm] q=t

Fall 1: p/q [mm] \ge [/mm] 0 [mm] \wedge [/mm] r/t [mm] \ge [/mm] 0
(|p| , |q| )= (|r|, |t| )
<=>|p|=|r| , |q|=|t|
p/q [mm] \ge [/mm] 0 <=> p [mm] \ge [/mm] 0 (da q [mm] \in \IN) [/mm]
r/t [mm] \ge [/mm] 0 <=> r [mm] \ge [/mm] 0 (da t  [mm] \in \IN) [/mm]
<=> p=r, q=t


Fall 2: p/q < 0 [mm] \wedge [/mm] r/t < 0
(2|p| ,2 |q| )= (2|r|, 2|t| )
<=>|p|=|r| , |q|=|t|
-p=-r <=> p=r
q=t

Fall 3: p/q [mm] \ge [/mm] 0 [mm] \wedge [/mm] r/t < 0
(|p| , |q| )= (2|r|, 2|t| )
<=> |p|=2|r|, |q| = 2 |t|
<=> p=-2r, q= 2t
???

        
Bezug
Kardinalzahlen/Mächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:04 Do 23.05.2013
Autor: tobit09

Hallo Lu-,


> -) [mm]|\IQ| \ge |\IN|[/mm] mit f(n)=n eine Injektion

[mm] $f\colon\IN\to\IQ$. [/mm] [ok]

> -) [mm]|\IQ| \le |\IN|[/mm]
>  Kam ich nicht wirklich weiter. Hab im
> Internet nachgeschaut und da steht:
>  
> s [mm]\in \IQ:[/mm] s= p/q mit p [mm]\in \IZ[/mm] und q [mm]\in \IN[/mm] ohne 0
> ggT(p,q)=1
>  g(p/q)= [mm]\begin{cases} (|p|,|q|), & \mbox{für } p/q \ge 0 \\(2|p|,2|q|), & \mbox{für } p/q <0 \end{cases}[/mm]
>  
> J [mm]\circ[/mm] g : [mm]\IQ[/mm] -> [mm]\IN[/mm] injektiv als Zusammensetzung
> injektiver Funktionen wobei J die Cantorsche
> Paarungsfunktion ist.
>  
> Nun, ich wäre nie auf das g draufgekommen.. Wie kann man
> da von selbst draufkommen? Warum gilt Injektivität beim
> Betrag?

Idee ist, eine injektive Abbildung [mm] $g\colon\IQ\to\IN\times\IN$ [/mm] zu basteln. Die Elemente von [mm] $\IQ$ [/mm] sind ja, wenn man sie als gekürzte Brüche mit Nenner $>0$ schreibt, quasi spezielle Zahlenpaare. Da liegt es nahe, den Elementen von [mm] $\IQ$ [/mm] dieses Zahlenpaar zuzuordnen. Ein Problem tritt dabei auf: Der Zähler könnte negativ sein. Für diesen Fall ist nun die Idee, den entsprechenden Elementen von [mm] $\IQ$ [/mm] Paare natürlicher Zahlen zuzuordnen, die keinem gekürzten Bruch entsprechen. Da bietet sich z.B. $(2|p|,2q)$ für p/q mit p [mm]\in \IZ[/mm] und q [mm]\in \IN[/mm] ohne 0 an. Anstelle der 2 hätte man auch jede beliebige natürliche Zahl [mm] $\ge2$ [/mm] nehmen können. Das Entscheidende ist, dass das Zahlenpaar keinem gekürzten Bruch entspricht.


> Seien s,a [mm]\in \IQ[/mm] d.h. s= p/q, a=r/t mit ggT(p,q)=1 und
> ggT(r,t)=1

Und [mm] $q,t\in\IN\setminus\{0\}$ [/mm] willst du sicherlich annehmen.

>  Angenommen: g(p/q)= g(r/t)
>  ZZ.:  s= a  d.h. p=r [mm]\wedge[/mm] q=t
>  
> Fall 1: p/q [mm]\ge[/mm] 0 [mm]\wedge[/mm] r/t [mm]\ge[/mm] 0
>  (|p| , |q| )= (|r|, |t| )
>  <=>|p|=|r| , |q|=|t|
>  p/q [mm]\ge[/mm] 0 <=> p [mm]\ge[/mm] 0 (da q [mm]\in \IN)[/mm]

>  r/t [mm]\ge[/mm] 0 <=> r [mm]\ge[/mm]

> 0 (da t  [mm]\in \IN)[/mm]
>  <=> p=r, q=t

>  
>
> Fall 2: p/q < 0 [mm]\wedge[/mm] r/t < 0
>  (2|p| ,2 |q| )= (2|r|, 2|t| )
>  <=>|p|=|r| , |q|=|t|
>  -p=-r <=> p=r

>  q=t

[ok]


> Fall 3: p/q [mm]\ge[/mm] 0 [mm]\wedge[/mm] r/t < 0
>  (|p| , |q| )= (2|r|, 2|t| )
>  <=> |p|=2|r|, |q| = 2 |t|

>  <=> p=-2r, q= 2t

> ???

Also haben p und q den gemeinsamen Teiler 2 und somit [mm] $\operatorname{ggT}(p,q)\not=1$. [/mm] Dieser Fall kann also glücklicherweise nicht eintreten.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]