Kern=Bild, n gerade < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
hallo ihr lieben,
ich habe ein Problem
Es sei [mm] n\in\IN [/mm] und V ein n-dimensionaler K-Vektorraum. Ich soll zeigen, dass es genau dann eine lineare Abbildung [mm] \phi [/mm] :V->V mit Kern [mm] \phi [/mm] =Bild [mm] \phi [/mm] gibt, wenn n gerade ist.
die erste Richtung habe ich schon gezeigt (und hoffe, dass sie richtig ist):
"=>" Aus Kern [mm] \phi [/mm] =Bild [mm] \phi [/mm] ergibt sich unter Anwendung des Dimensionsatzes
dim Kern [mm] \phi [/mm] +dim Bild [mm] \phi [/mm] =V=n
<=> dim Kern [mm] \phi [/mm] +dim Kern [mm] \phi [/mm] =n
<=> 2*dim Kern [mm] \phi [/mm] =n
<=> dim Kern [mm] \phi [/mm] =n/2
=> Da dim Kern [mm] \phi [/mm] eine natürliche Zahl sein muss, muss n durch 2 teilbar und damit gerade sein.
Zugegeben: das war bisher auch nicht sehr schwer, aber bei der anderen Richtung habe ich Probleme.....
"<=" Angenommen: n ist gerade
Zu Zeigen: Es existiert eine lineare Abbildung mit Kern [mm] \phi [/mm] =Bild [mm] \phi
[/mm]
Aber wie gehts jetzt weiter?
weiß das jemand von euch?
lieber gruß
metropolitan
Ich habe diese Frage in keinem weiteren Forum gestellt.
|
|
|
|
Hallo Metropolitan,
Für die andere Richtung ist es hilfreich, wenn du weisst, dass eine lineare Abbildung durch das Bild einer Basis eindeutig bestimmt ist. Wenn du das weisst bzw. es voraussetzen darfst, geht es ganz einfach:
Sei n = 2m gerade. Nimm dir eine Basis von V. Die ersten m Basisvektoren nennen wir [mm] a_1, [/mm] ..., [mm] a_m, [/mm] die anderen m Basisvektoren nennen wir [mm] b_1, [/mm] ..., [mm] b_m. [/mm]
Der Kern und das Bild von unserer gesuchten Abbildung müssen die Dimension m haben. Wir müssen also genau m Basisvektoren auf die Null abbilden. Gleichzeitig müssen diese Basisvektoren aber den Bildraum aufspannen. Damit ist klar, wohin die übrigen Basisvektoren abgebildet werden müssen - nämlich auf die ersten Basisvektoren (oder eine andere Basis des Kerns).
Definiere die lineare Abbildung f durch
[mm] f(a_i) [/mm] = 0,
[mm] f(b_i) [/mm] = [mm] a_i [/mm] für i = 1, ..., m.
Diese Abbildung leistet das Gewünschte.
Liebe Grüsse,
Irrlicht
|
|
|
|