matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKern einer Matrix über Z/2Z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Kern einer Matrix über Z/2Z
Kern einer Matrix über Z/2Z < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Matrix über Z/2Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Mo 15.07.2013
Autor: ThomasTT

Sei $A$ eine [mm] $n\times [/mm] m$ Matrix mit ganzzahligen Einträgen. Sei $n<m$, dann ist der Kern [mm] $K=\ker(A)\subseteq \mathbb R^m$ [/mm] nicht leer. Doch was kann man über den Kern $K'$ von $A'= (A\ mod\ 2)$ über [mm] $\mathbb F_2 [/mm] = [mm] \mathbb Z/2\mathbb [/mm] Z$ sagen? Sprich wenn $K$ sagen wir $d$ Basisvektoren hat, hat der Kern $K'$ dann $d'$ Basisvektoren mit [mm] $d\le [/mm] d'$ ?

Seien also [mm] $\{v_1,...v_d\}\subset [/mm] K$ die $d$ Basisvektoren von $K$, dann können wir zunächst annehmen, dass all diese Vektoren in [mm] $\mathbb Z^m$ [/mm] sind. Nehmen wir diese dann mod 2, so erhalten wir die Vektoren [mm] $\{v'_1,...,v'_d\}$. [/mm] Und diese sind dann in [mm] $K'\subset \mathbb F_2^m$. [/mm] Doch nun bin ich mir unsicher wie ich weiter verfahren sollte.



        
Bezug
Kern einer Matrix über Z/2Z: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 15.07.2013
Autor: Schadowmaster

Hey Thomas,

Es stimmt, es ist $(K mod 2) [mm] \subseteq [/mm] K'$.
Allerdings hat deine Argumentation noch ein kleines Problem:
zB  [mm] $\vektor{1 \\ 2}$ [/mm] und [mm] $\vektor{1 \\ 0}$ [/mm] sind linear unabhängig über [mm] $\IZ$ [/mm] bzw. [mm] $\IQ$, [/mm] über [mm] $\IF_2$ [/mm] allerdings nicht mehr (dort sind sie sogar gleich).
Daher kannst du nicht sagen, dass die [mm] $\{v_1',\ldots , v_d'\}$ [/mm] zu einer Basis von $K'$ ergänzt werden können, da sie im Allgemeinen nicht linear unabhängig sein müssen.
Daher erhältst du leider auch nicht $d [mm] \leq [/mm] d'$.

Es gilt tatsächlich $d [mm] \leq [/mm] d'$, allerdings kannst du das leider nicht auf diese Art zeigen.
Kennst du schon den Begriff des Rangs einer Matrix und weißt du was dieser mit der Dimension des Kerns zu tun hat?
Wenn ja dann versuch mal zu zeigen, dass $Rang(A') [mm] \leq [/mm] Rang(A)$.

Hinweis: Haben wir eine nichttriviale Darstellung der $0$ als
$0 = [mm] \sum_i^m z_iv_i$ [/mm] mit [mm] $v_i \in \IZ^m$ [/mm] und [mm] $z_i \in \IZ$ [/mm] nicht alle gleich $0$, so erhalten wir auch modulo $2$ eine Darstellung der 0 - diese könnte aber trivial sein.
Zeige, dass aus dieser Darstellung in [mm] $\IZ^m$ [/mm] auch eine nichttrivale Darstellung der $0$ in [mm] $\IF_2^m$ [/mm] folgt, also die [mm] $v_i'$ [/mm] linear abhängig über [mm] $\IF_2$ [/mm] sind.


lg

Schadow

Bezug
                
Bezug
Kern einer Matrix über Z/2Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Di 16.07.2013
Autor: ThomasTT

Also kurz zum Context: die Frage ist von einer Kommutative Algebra Altklausur (Bachelor 3. Jahr bzw. 6. Semester). Daher sind mir Dinge wie der Rang einer Matrix bekannt.

Was mich bei dieser Frage jedoch verwirrt, ist wie man die Zahlen $d$ und $d'$ auffassen kann. Darf man sie als Dimensionen der Kerne $K,K'$ bezeichnen? Aber wenn man $K$ als Teilmenge von [mm] $\mathbb Z^m$ [/mm] ansieht, dann kann man ja nicht wirklich von einer Dimension reden, da es ja kein Vektorraum ist.

Ich hatte nun versucht einen Gruppenhomomorphism zwischen der additiven Gruppe [mm] $K=\{x\in\mathbb Z^m\mid Ax=0\}$ [/mm] und der additiven Gruppe [mm] $K'=\{x\in \mathbb F_2^m\mid Ax\equiv 0 \mod 2\}$ [/mm] zu finden. Beispielsweise $f:K/2K [mm] \to [/mm] K'$. Denn wenn $f$ injektiv ist, dann wäre doch [mm] $d\le [/mm] d'$, oder? Aber ich komme immer etwas durcheinander.

Bezug
                        
Bezug
Kern einer Matrix über Z/2Z: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 16.07.2013
Autor: Schadowmaster

Ich nehme stark an, dass sowohl $d$ als auch $d'$ Dimensionen sein sollen.
[mm] $\IF_2$ [/mm] ist ein Körper, da macht das also kein Problem.
Für $K$ verstehe ich das so, dass man eine Basis des Kerns (als [mm] $\IQ-$Vektorraum) [/mm] ausrechnet und jeden einzelnen Basisvektor mit einem geeigneten skalaren Vielfachen multipliziert, sodass er ganzzahlig wird.
Natürlich hast du Recht, $d$ ist nicht die Dimension von $K$ als [mm] $\IZ-$Modul [/mm] (hier müsste man nämlich erstmal die Frage stellen, ob $K$ überhaupt frei ist).

Der Gruppenhomomorphismus wird dich wahrscheinlich nicht sehr weit bringen, da $K$ unendlich groß ist und $K'$ nur endlich.


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]