matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKern einer Matrixabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Kern einer Matrixabbildung
Kern einer Matrixabbildung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Matrixabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 22.11.2009
Autor: Aoide

Aufgabe
Gegeben: T = [mm] \IR^3,4 \to \IR^1,3 [/mm]     und M [mm] \mapsto\vmat{0&0&0&1}M [/mm]

A) Gesucht ist eine von der Nullmatrix verschiedene Matrix [mm] A\in\IR^{3,4}, [/mm] sodass A [mm] \in [/mm] Kern(T)

B) Gesucht ist eine Matrix [mm] B\in \IR^{3,4}, [/mm] sodass [mm] B\not\in [/mm] Kern(T).

Ich habe keine Idee, wie ich diese Aufgabe angehen soll :(
Kern bedeutet doch, dass die Abbildung multipliziert mit einem Vektor den Nullvektor ergibt?
Aber wie multipliziere ich den eine 1x3Matrix mit einer 4x3Matrix? Das ist doch normalerweise gar nicht möglich. Ich meine leider aber auch in meinem Skript nichts dazu zu finden oder vielleicht bringe ich es nicht richtig in Zusammenhang.
Wäre dankbar über etwas Hilfe!

        
Bezug
Kern einer Matrixabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 22.11.2009
Autor: steppenhahn

Hallo Aoide,

> Gegeben: T = [mm]\IR^3,4 \to \IR^1,3[/mm]     und M
> [mm]\mapsto\vmat{0&0&0&1}M[/mm]
>  
> A) Gesucht ist eine von der Nullmatrix verschiedene Matrix
> [mm]A\in\IR^{3,4},[/mm] sodass A [mm]\in[/mm] Kern(T)
>  
> B) Gesucht ist eine Matrix [mm]B\in \IR^{3,4},[/mm] sodass [mm]B\not\in[/mm]
> Kern(T).
>  Ich habe keine Idee, wie ich diese Aufgabe angehen soll
> :(
>  Kern bedeutet doch, dass die Abbildung multipliziert mit
> einem Vektor den Nullvektor ergibt?
>  Aber wie multipliziere ich den eine 1x3Matrix mit einer
> 4x3Matrix? Das ist doch normalerweise gar nicht möglich.

Du musst keine 1x3-Matrix mit einer 4x3-Matrix multiplizieren...
Du liegst erstmal richtig mit deiner Aussage: Ja, wir müssen eine Matrix A finden, für die gilt: T(A) = Nullvektor.

Aber T(A) bedeutet hier ja gerade

[mm] \vmat{0&0&0&1}*A, [/mm]

also suchen wir eine Matrix A ungleich der Nullmatrix sodass

[mm] \vmat{0&0&0&1}*A [/mm] = Nullvektor.

Und das ist doch nun wirklich nicht so schwer. Schreib dir doch mal eine beliebige Matrix A, zum Beispiel

$A = [mm] \pmat{1 & 1 & 1\\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1}$ [/mm]

und führe für die einfachmal die Abbildung aus. Dann erkennst du vielleicht schon, welche Komponenten in der Matrix Null sein sollten.

Grüße,
Stefan

Bezug
                
Bezug
Kern einer Matrixabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 22.11.2009
Autor: Aoide

Mmh, also wäre eine mögliche Matrix z.B. [mm] \vmat{1&1&1\\1&1&1\\1&1&1\\0&0&0} [/mm] ??

Ich glaube, ich denke mir die Aufgabe gerade komplizierter als sie ist, kann das sein??

Danke dir schonmal für die Hilfe!

Bezug
                        
Bezug
Kern einer Matrixabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 22.11.2009
Autor: steppenhahn

Hallo!

> Mmh, also wäre eine mögliche Matrix z.B.
> [mm]\vmat{1&1&1\\1&1&1\\1&1&1\\0&0&0}[/mm] ??

[ok] Ja, genau, das ist eine Matrix, die offenbar durch die Abbildung T zu 0 wird, aber nicht die Nullmatrix ist. Aufgabe erfüllt.

> Ich glaube, ich denke mir die Aufgabe gerade komplizierter
> als sie ist, kann das sein??

Das könnte sein :-)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]