matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKlassifizieren einer Fläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Klassifizieren einer Fläche
Klassifizieren einer Fläche < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassifizieren einer Fläche: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:44 Mo 30.01.2012
Autor: lzaman

Aufgabe
Klassifizieren Sie die Fläche, die im [mm]\IR^3[/mm] gegeben ist durch die Gleichung

[mm]2x^2+8y^2+2z^2+8xy+4xz+8yz+2x+4z=0[/mm]



Hallo, leider habe ich das Prozedere noch nicht ganz verstanden. Also als erstes muss ich die Kennmatrizen A und I bilden.

mit

[mm]A=\pmat{ 2 & ? & ? \\ ? & 8 & ? \\ ? & ? & 2} [/mm]  und [mm]I=\pmat{ 2 & ? & ? & ?\\ ? & 8 & ? & ? \\ ? & ? & 2 & ? \\ ? & ? & ? & ?} [/mm]

leider weiss ich nicht was ich statt der Fragezeichen eintragen soll, vielleicht könnt Ihr mir das näher bringen.

Wenn ich das dann habe, kann ich den Rang der Matrizen bestimmen. Danach kann ich anhand der Formeln in meinem Skript das geommetrische Gebilde benennen.

Danke


        
Bezug
Klassifizieren einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mo 30.01.2012
Autor: leduart

Hallo
sieh erstmal in wiki etwa unter Quadriken und Hauptachsentransformation nach. Eigentlich muss es doch auch in deinem Skropt stehen?
Gruss leduart

Bezug
        
Bezug
Klassifizieren einer Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Mo 30.01.2012
Autor: lzaman


Hi, also ich hab da noch etwas gefunden im skript.

Und zwar kann man aus der Gleichung

[mm]a_{11}x^2+a_{22}y^2+2a_{12}xy+b=0 [/mm]

die Matrix

[mm]A=\pmat{ a_{11} & a_{12} \\ a_{12} & a_{22} } [/mm] entnehmen.

Leider weiss ich immer noch nicht, wie man an den Wert von [mm] a_{12} [/mm] kommt.


Bezug
                
Bezug
Klassifizieren einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mo 30.01.2012
Autor: leduart

Hallo
[mm] a_{12}=a_{21} [/mm] ist der halbe Koeffizient, der vor x*y bzw vor [mm] x_1*x2 [/mm] steht entsprechend [mm] a{13}=a_{31} [/mm] vor [mm] x_1*x_3 [/mm] usw.
aber das steht doch auch in deinem Zitat?
Gruss leduart

Bezug
                        
Bezug
Klassifizieren einer Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Mo 30.01.2012
Autor: lzaman

Hallo, jetzt bin ich ganz verunsichert. Also die Gleichung :

[mm]2x^2+8y^2+2z^2+8xy+4xz+8yz+2x+4z=0[/mm] sieht allgemein so aus:

[mm]a_{11}x^2+a_{22}y^2+a_{33}z^2+a_{12}xy+a_{13}xz+8yz+2x+4z=0[/mm].

Kann ich dann so

[mm]A=\pmat{ a_{11} & \frac{a_{12}}{2} & \frac{a_{13}}{2} \\ \frac{a_{12}}{2} & a_{22} & \frac{a_{12}}{2} \\ \frac{a_{13}}{2} & \frac{a_{12}}{2} & a_{13}} [/mm]

die Kennmatrix A beschreiben?

Vor allem muss es eine symmetrische Matrix sein, so muss gelten

[mm] A=A^T[/mm]

Das ist dann hier der Fall bei der algemeinen Matrix A.




Bezug
                                
Bezug
Klassifizieren einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Mo 30.01.2012
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
Du hast in der matrix a_{32) und a_{23} falsch  in deiner Gleichung auch den koeff bei  yz nicht benannt, da steht noch 8 statt a_{23}
Gruss leduart

Bezug
                                        
Bezug
Klassifizieren einer Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 Mo 30.01.2012
Autor: lzaman


Danke bis hierhin, bald komme ich auch auf die Lösung.

So wollen wir mal bis hierhin zusammenfassen:

aus der allgemeinen Gleichung [mm]a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz+b=0[/mm]

kann ich die Kennmatrix [mm]A=\pmat{ a_{11} & \frac{a_{12}}{2} & \frac{a_{13}}{2} \\ \frac{a_{12}}{2} & a_{22} & \frac{a_{23}}{2} \\ \frac{a_{13}}{2} & \frac{a_{23}}{2} & a_{13}}[/mm] bestimmen.

aus der Gleichung [mm]2x^2+8y^2+2z^2+8xy+4xz+8yz+2x+4z=0[/mm] kann somit die

Kennmatrix [mm]A=\pmat{ 2 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 2}[/mm] bestimmt werden.

Durch elementare Umformung [mm](Z2:=Z2-2Z1, Z3:=Z3-Z1)[/mm] erhält man

[mm]A=\pmat{ 2 & 4 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0}[/mm]. Der Rang von A ist dann offenbar rg(A)=1.

Soweit, so gut, oder?

Nun kommts... Wie erstelle ich die Matrix [mm]I=\pmat{ A & ? \\ ? & ? }[/mm], also

[mm]I=\pmat{ 2 & 4 & 2 & ? \\ 4 & 8 & 4 & ? \\ 2 & 4 & 2 & ? \\ ? & ? & ? & ?}[/mm] ?

Wenn ich das noch weiss, dann kann ich den Rang von I bestimmen und dann die Fläche des zweiten Grades im [mm]\IR^3[/mm] angeben.

Danke, du hast mir schon sehr geholfen...






Bezug
                                                
Bezug
Klassifizieren einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 31.01.2012
Autor: leduart

Hallo
ich kenne die art die quadriken zu bestimmen nicht, aber was sinnvolles ergibt sich wenn die untere Zeile (0,0,0,1) die rechte Spalte die koeffizienten von x,y,z enthält, die bei dir
[mm] (2,0,4)^t [/mm] waren.
Gruss leduart

Bezug
                                                        
Bezug
Klassifizieren einer Fläche: Respekt
Status: (Frage) beantwortet Status 
Datum: 17:45 Di 31.01.2012
Autor: lzaman

Obwohl du diese Art nicht kennst, nimmst du Dir mein Problem trotzdem an, das würdige ich sehr.

Ich versuche mal zu erläutern, was ich im Skript dazu stehen habe.

Eine Fläche zweiten Grades im [mm]\IR^n[/mm] wird durch die Menge aller [mm]\vec{x}\in\IR^n[/mm] gegeben, für die gilt:

[mm]\vec{x}^T\cdot A \cdot \vec{x} +2\vec{b}^T \cdot {x} +c=0[/mm]

Hierbei ist [mm]A\in M_{n,n}(\IR)[/mm] eine symmetrische Matrix, [mm]A \neq 0[/mm], sowie [mm]\vec{b}\in\IR^n[/mm] und [mm]c\in\IR[/mm].

Weiterhin kann man die Kennmatrix I noch so angeben:

[mm]I=\pmat{ A & \vec{b} \\ \vec{b}^T & c } [/mm].


Also A konnten wir bestimmen. Aber was ist der Vektor [mm] \vec{x} [/mm] und der Vektor [mm] \vec{b} [/mm] in meiner Gleichung? Kann mir das vielleicht jemand erläutern?

Die Konstante c ist ja in dieser Gleichung 0, somit haben wir schon mal eine Unbekannte weniger:

[mm] I=\pmat{ 2 & 4 & 2 & ? \\ 4 & 8 & 4 & ? \\ 2 & 4 & 2 & ? \\ ? & ? & ? & 0} [/mm]

Danke

Eine allgemeine Gleichung die mein Problem lösen würde wäre:

[mm] a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz+2a_{41}x+2a_{42}y+2a_{43}z+\underbrace{a_{44}}_{=c}=0 [/mm]

Also

[mm] I=\pmat{ 2 & 4 & 2 & \frac{a_{41}}{2} \\ 4 & 8 & 4 & \frac{a_{42}}{2} \\ 2 & 4 & 2 & \frac{a_{43}}{2} \\ \frac{a_{41}}{2} & \frac{a_{42}}{2} & \frac{a_{43}}{2} & a_{44}} [/mm]

Fragt mich aber nicht, woher ich das habe, das sagt mir jetzt einfach mal mein logischer Verstand...




Bezug
                                                                
Bezug
Klassifizieren einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 31.01.2012
Autor: leduart

Hallo
richtig ist, der Vektor [mm] 2*b^T=(a_{41},a_{42},a_{43} [/mm]
und damit ist dein I richtig.
der Vektor [mm] \vec{x} [/mm] ist einfach [mm] (x,y,z)^T [/mm]
[mm] b^T*\vec{x} [/mm] das Skalarprodkt von x und b als matrixmult geschrieben
wenn du x^TAx bildest bekommst du die quadratischen (und gemischten) Terme.
Gruss leduart


Bezug
                                                                        
Bezug
Klassifizieren einer Fläche: Rang von I
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 31.01.2012
Autor: lzaman

Hallo Leduart, dank deiner Hilfe habe ich (glaube ich zumindest) die Lösung:

Die Kennmatrizen A und I sind

[mm]A=\pmat{ 2 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 2}[/mm] , [mm]I=\pmat{ 2 & 4 & 2 & 1 \\ 4 & 8 & 4 & 0 \\ 2 & 4 & 2 & 2 \\ 1 & 0 & 2 & 0}[/mm]

[mm]rg(A)=1[/mm] und der Rang von I nach elementarer Umformung:

[mm](Z2:=Z2-2Z1, Z3:=Z3-Z1)[/mm]

[mm]I=\pmat{ 2 & 4 & 2 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0}[/mm]

[mm](Z2:=Z4, Z4:=Z4+2Z3)[/mm]


[mm]I=\pmat{ 2 & 4 & 2 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0}[/mm]

Oh je ich bekomme den Rang von I nicht bestimmt. Wenn ich weiter umforme erhalte ich rg(I)=3. Ist das dann richtig?

Wenn das nämlich stimmen sollte, dann handelt es sich offenbar um einen

parabolischen Zylinder

Danke


Bezug
                                                                                
Bezug
Klassifizieren einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Di 31.01.2012
Autor: leduart

Hallo
das sind doch schon 3 lin unabh- zeilenvektoren, also rang 3?
Gruss leduart

Bezug
                                                                                        
Bezug
Klassifizieren einer Fläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Di 31.01.2012
Autor: lzaman

Danke, das war es schon. Die Aufgabe ist gelöst.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]