matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKlausur LA1 1.1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Klausur LA1 1.1
Klausur LA1 1.1 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klausur LA1 1.1: Korrektur
Status: (Frage) beantwortet Status 
Datum: 08:17 Sa 24.03.2007
Autor: Zerwas

Aufgabe
Seien f,g Endomorphismen eines endlich Dimensionalen K-Vektorraums V. Welche der folgenden Aussagen sind richtig?
(a) f ist injektiv => f ist surjektiv
(b) f ist injektiv => $ [mm] f^2 [/mm] ist injektiv
(c) f & g sind inj => f+g ist injektiv

(a) stimmt, da f: [mm] V\to [/mm] V ergibt sich aus der Tatsache, dass jedem Element ein eindeutiges Anderes zugewiesen wird, dass auch ganz V "getroffen wird
(b) stimmt
(c) stimmt

Ich wäre Dankbar wenn jmd diese Aufgaben Korrektur lesen könnte und mich auf Fehler Aufmerksam machen und bei den Aufgaben bei denen mir der Ansatz oder die Begründung fehlt auf die Sprünge hefen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Klausur LA1 1.1: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 09:23 Sa 24.03.2007
Autor: M.Rex

Hallo

> Seien f,g Endomorphismen eines endlich Dimensionalen
> K-Vektorraums V. Welche der folgenden Aussagen sind
> richtig?
>  (a) f ist injektiv => f ist surjektiv

>  (b) f ist injektiv => $ [mm]f^2[/mm] ist injektiv

>  (c) f & g sind inj => f+g ist injektiv

>  (a) stimmt, da f: [mm]V\to[/mm] V ergibt sich aus der Tatsache,
> dass jedem Element ein eindeutiges Anderes zugewiesen wird,
> dass auch ganz V "getroffen wird

Nein: Injektiv heisst ja, dass jedes Element aus V auch getroffen wird.
Beispiel:

[mm] f:\IR\to\IR x\mapsto{x²} [/mm] ist injektiv, aber nicht surjektiv

Ausserdem würde dann die Bijektivität keinen Sinn ergeben, wenn eine Injektive Funktion auch eine surjektive wäre.

>  (b) stimmt
>  (c) stimmt
>

Das dürfte richtig sein

> Ich wäre Dankbar wenn jmd diese Aufgaben Korrektur lesen
> könnte und mich auf Fehler Aufmerksam machen und bei den
> Aufgaben bei denen mir der Ansatz oder die Begründung fehlt
> auf die Sprünge hefen könnte.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Marius

Bezug
                
Bezug
Klausur LA1 1.1: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:44 Sa 24.03.2007
Autor: Marc

Hallo Marius,

> > Seien f,g Endomorphismen eines endlich Dimensionalen
> > K-Vektorraums V. Welche der folgenden Aussagen sind
> > richtig?
>  >  (a) f ist injektiv => f ist surjektiv

>  >  (b) f ist injektiv => $ [mm]f^2[/mm] ist injektiv

>  >  (c) f & g sind inj => f+g ist injektiv

>  >  (a) stimmt, da f: [mm]V\to[/mm] V ergibt sich aus der Tatsache,
> > dass jedem Element ein eindeutiges Anderes zugewiesen wird,
> > dass auch ganz V "getroffen wird
>  
> Nein: Injektiv heisst ja, dass jedes Element aus V auch
> getroffen wird.
>  Beispiel:
>  
> [mm]f:\IR\to\IR x\mapsto{x²}[/mm] ist injektiv, aber nicht
> surjektiv
>  
> Ausserdem würde dann die Bijektivität keinen Sinn ergeben,
> wenn eine Injektive Funktion auch eine surjektive wäre.

[notok], siehe meine Antwort :-)
  

> >  (b) stimmt

>  >  (c) stimmt
> >
>
> Das dürfte richtig sein

(c) stimmt meiner Meinung nach auch nicht, siehe Gegenbeispiel in meiner Antwort.

Viele Grüße,
Marc

Bezug
        
Bezug
Klausur LA1 1.1: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Sa 24.03.2007
Autor: Marc

Hallo Zerwas!

> Seien f,g Endomorphismen eines endlich Dimensionalen
> K-Vektorraums V. Welche der folgenden Aussagen sind
> richtig?
>  (a) f ist injektiv => f ist surjektiv

>  (b) f ist injektiv => $ [mm]f^2[/mm] ist injektiv

>  (c) f & g sind inj => f+g ist injektiv

>  (a) stimmt, da f: [mm]V\to[/mm] V ergibt sich aus der Tatsache,
> dass jedem Element ein eindeutiges Anderes zugewiesen wird,
> dass auch ganz V "getroffen wird

Die Begründung ist zwar nicht gut, aber die Aussage stimmt. Sie ergibt sich z.B. aus der Dimensionsformel.
[mm] $\dim [/mm] V= [mm] \dim \operatorname{Bild}(f) [/mm] + [mm] \dim \operatorname{Kern}(f)$ [/mm]
und da f injektiv ist, ist [mm] $\operatorname{Kern}(f)=\{0\}$ [/mm]

Diese Äquivalenz von Injektivität/Surjektivität/Bijektivität gilt natürlich nur bei endlichen Endomorphismen, also bei linearen Abbildungen [mm] $V\to [/mm] V$ mit [mm] $\dim V<\infty$ [/mm]

>  (b) stimmt

[ok]

>  (c) stimmt

[notok]
z.B. f=id und g=-id

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]