matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikKlausuraufgabe: Kreisbewegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Klausuraufgabe: Kreisbewegung
Klausuraufgabe: Kreisbewegung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klausuraufgabe: Kreisbewegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Mi 20.05.2015
Autor: Rebellismus

Aufgabe
Ein scheibenförmiger Schleifstein mit der Masse 2,75 kg und einem Durchmesser von 15 cm drehe sich mit 680 Umdrehungen pro Minute. Unmittelbar nach dem Abschalten des Antriebs schleift jemand noch 12 s lang eine Sichel weiter am Schleifstein, bis dieser zum Stillstand kommt.

(a) Bestimmen Sie die als konstant angenommene Winkelbeschleunigung der Schleifscheibe.
(b) Wie schnell dreht sich die Scheibe 5 Sekunden nach Abschalten des Antriebs?
(c) Wie gross ist das Drehmoment, das von der Sichel auf die Scheibe ausgeübt wird (ohne Reibung)?

a)

[mm] f=11,33\bruch{1}{s} [/mm]

[mm] \omega=2\üi*f=71,19\bruch{1}{s} [/mm]

[mm] v=\omega*r=71,19\bruch{1}{s}*15cm=71,19\bruch{1}{s}*0,15m [/mm] = [mm] 10,68\bruch{m}{s} [/mm]

[mm] a=\bruch{v^2}{r}=\bruch{(10,68\bruch{m}{s})^2}{0,15m}=760,42\bruch{m}{s^2} [/mm]

[mm] \alpha=\bruch{a}{r}=5069,47\bruch{1}{s^2} [/mm]

ist die Lösung richtig? ignoriert bitte klein Rundungsfehler. mein lehrer ist da ganz locker

Wie löse ich aufgabe b) ?

bei b) ist doch die durchschnittliche winkelgeschwindigkeit nach dem abschalten gesucht oder?

        
Bezug
Klausuraufgabe: Kreisbewegung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mi 20.05.2015
Autor: M.Rex

Hallo

> Ein scheibenförmiger Schleifstein mit der Masse 2,75 kg
> und einem Durchmesser von 15 cm drehe sich mit 680
> Umdrehungen pro Minute. Unmittelbar nach dem Abschalten des
> Antriebs schleift jemand noch 12 s lang eine Sichel weiter
> am Schleifstein, bis dieser zum Stillstand kommt.

>

> (a) Bestimmen Sie die als konstant angenommene
> Winkelbeschleunigung der Schleifscheibe.
> (b) Wie schnell dreht sich die Scheibe 5 Sekunden nach
> Abschalten des Antriebs?
> (c) Wie gross ist das Drehmoment, das von der Sichel auf
> die Scheibe ausgeübt wird (ohne Reibung)?
> a)

>

> [mm]f=11,33\bruch{1}{s}[/mm]

Rechne doch mit Brüchen, und der Zahl [mm] \pi [/mm] in der Rechnung, dann wird das sehr genau.

Die Scheibe schafft 680 Umdrehungen in einer Minute, also in der Tat pro Sekunde [mm] 11\frac{1}{3} [/mm] Umdrehungen, also stimmt [mm] f=11\frac{1}{3}\left[\frac{1}{s}\right]=\frac{34}{3}\left[\frac{1}{s}\right] [/mm]


>

> [mm]\omega=2\üi*f=71,19\bruch{1}{s}[/mm]

Du meinst die Winkelgeschwindigkeit beim Ausschalten, das ist mit
[mm] $\omega=2\cdot\pi\cdot f=2\cdot\pi\cdot\frac{34}{3}\left[\frac{1}{s}\right]=\frac{68\pi}{3}\left[\frac{1}{s}\right]\approx71,2\left[\frac{1}{s}\right]$ [/mm] ebenfalls korrekt

>

> [mm]v=\omega*r=71,19\bruch{1}{s}*15cm=71,19\bruch{1}{s}*0,15m[/mm] =
> [mm]10,68\bruch{m}{s}[/mm]


Hier hast du den Radius mit dem Durchmesser verwechselt, r=7,5cm=0,075m wäre korrekt, und damit dann

[mm] v=r\cdot\omega=0,075[/mm] [m][mm] \cdot\frac{68\pi}{3}\left[\frac{1}{s}\right]=\frac{17\pi}{10}\left[\frac{m}{s}\right]\approx5,34\left[\frac{m}{s}\right] [/mm]


>

> [mm]a=\bruch{v^2}{r}=\bruch{(10,68\bruch{m}{s})^2}{0,15m}=760,42\bruch{m}{s^2}[/mm]

Die Formeo [mm] a=\frac{v^{2}}{r} [/mm] macht keinen Sinn, du musst di e12s, die der Stein zum Stillstand braucht, noch einpflegen.
Hier sollte ein negatives Vorzeichen herauskommen, das ganze bremst ja von der Startgeschwindigkeit [mm] \frac{17\pi}{10}\left[\frac{m}{s}\right] [/mm] auf die Endgeschwindigkeit 0 ab, also gilt

[mm] a=\frac{\Delta v}{t}=\frac{\frac{17\pi}{10}\left[\frac{m}{s}\right]-0\left[\frac{m}{s}\right]}{0s-12s}=-\frac{17\pi}{120}\left[\frac{m}{s^{2}}\right]\approx-0,445\left[\frac{m}{s^{2}}\right] [/mm]

>

> [mm]\alpha=\bruch{a}{r}=5069,47\bruch{1}{s^2}[/mm]

Berechne mit dem korrekten Wert der Beschleunigung nochmal die Winkelbeschleunigung [mm] \alpha [/mm] neu
>

> ist die Lösung richtig?

Das hättest du dir mir einer Überschlagsrechnung schnell prüfen können, dass deine Werte viel zu groß sind, überlege mal, welch irre hohe Beschleunigung dein Wert wäre. Als Richtwert kannst du ja immer mal die Erdbeschleunigung nehmen, dein Wert wäre das 760-fache der Erdbeschleunigung, und das über einen Zeitraum von 12s.

> ignoriert bitte klein
> Rundungsfehler. mein lehrer ist da ganz locker

Das ist traurig, die Bruchrechnung scheint vollkommen aus der Mode zu kommen.

>

> Wie löse ich aufgabe b) ?

>

> bei b) ist doch die durchschnittliche winkelgeschwindigkeit
> nach dem abschalten gesucht oder?

Nein, du hast hier in Aufgabe b eine []gleichmäßig beschleunigte Drehbewegung, dessen Winkelbeschleunigung [mm] \alpha [/mm] und dessen Startgeschwindigkeit [mm] \omega_{0} [/mm] du kennst. Außerdem kennst du die Zeit t=5s.

Marius

Bezug
                
Bezug
Klausuraufgabe: Kreisbewegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Mi 20.05.2015
Autor: Rebellismus

hallo,

a)

[mm] \alpha=\bruch{-0,445\bruch{m}{s^2} }{0,075m}=-5,933\bruch{1}{s^2} [/mm]

b)


[mm] \omega=\omega_0+\alpha*t=71,19\bruch{1}{s}-5,933\bruch{1}{s^2}*5s=41,525\bruch{1}{s} [/mm]

kannst du mir auch ein tipp für c) geben ?



Bezug
                        
Bezug
Klausuraufgabe: Kreisbewegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 20.05.2015
Autor: notinX

Hallo,

> hallo,
>  
> a)
>  
> [mm]\alpha=\bruch{-0,445\bruch{m}{s^2} }{0,075m}=-5,933\bruch{1}{s^2}[/mm]

das stimmt ungefähr. Warum ignoriest Du den Tipp von Marius? Wenn es möglich ist, das Ergebnis exakt anzugeben, sollte man das auch tun:
[mm] $\alpha=\frac{\Delta \omega}{\Delta t}=\frac{-\frac{68}{3}\pi\,\mathrm{\frac{1}{s}}}{12\,\mathrm{s}}=-\frac{17}{9}\pi\,\mathrm{\frac{1}{s^2}}$ [/mm]
Jetzt verdient das Gleichheitszeichen auch seinen Namen.

>  
> b)
>  
>
> [mm]\omega=\omega_0+\alpha*t=71,19\bruch{1}{s}-5,933\bruch{1}{s^2}*5s=41,525\bruch{1}{s}[/mm]

Hier das Gleiche. Korrekt wäre:
[mm] $\omega=\frac{68}{3}\pi\,\mathrm{\frac{1}{s}}-\frac{17}{9}\pi\,\mathrm{\frac{1}{s^2}}\cdot 5\,\mathrm{s}=\frac{119}{9}\pi\,\mathrm{\frac{1}{s}}$ [/mm]

>  
> kannst du mir auch ein tipp für c) geben ?

Wie hängt denn das Drehmoment mit der Winkelbeschleunigung zusammen? Kleiner Tipp:
Das ist analog zum Zusammenhang von Kraft und Beschleunigung bei translatorischen Bewegungen.

>  
>  

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]