matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKleinen Fermatschen Satz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Kleinen Fermatschen Satz
Kleinen Fermatschen Satz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinen Fermatschen Satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Di 25.11.2008
Autor: anna88

Aufgabe
(Verallgemeinerung des kleinen Fermatschen Satzes) Seien p eine Primzahl und a [mm] \in \IZ [/mm] eine ganze Zahl mit ggT(a,p) = 1

i) Zeigen Sie
                          [mm] a^{(p-1)p} \equiv [/mm] 1  mod [mm] p^{2}. [/mm]

   Hinweis: Schreiben Sie [mm] a^{p-1} [/mm] mit Hilfe des kleinen Satzes von Fermat in  
   der Form 1 + kp mit k [mm] \in \IZ [/mm]

ii) Beweisen Sie die allgemeinere Aussage, dass für alle l [mm] \in \IN_{0} [/mm] die folgende Kongruenz gilt:
    
                         [mm] a^{(p-1)p^{l}} \equiv [/mm] 1  mod [mm] p^{l+1}. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also ich habe mir zur i) überlegt:

Wenn [mm] a^{p-1} [/mm] kongruent 1 modulo p gilt, dann ist [mm] a^{p-1} [/mm] = m [mm] \* [/mm] p+1

[mm] \Rightarrow a^{(p-1)\*(p^k)} [/mm]
                = [mm] (a^{p-1})^{p^k} [/mm]
                = [mm] (m\*p+1)^{p^k} [/mm]
                =  [mm] \summe_{v=0}^{p^{k}} ((p^{k} [/mm] über [mm] v)\*(m\*p)^{v}) [/mm]
                = 1 + [mm] p^{k+1} \* \summe_{v=1}^{p^{k}}(((p^{k} [/mm] über        
                   [mm] v)/(p^{k}))\*(m\*p)^{v-1}) [/mm]
           kongruent 1 modulo [mm] p^{k+1} [/mm]

Aber ich bin mir nicht so sicher ob das so richtig ist, denn in der aufgabenstellung steht ja p², deshalb bin ich mir unsicher.
Könnt ihr mir bitte helfen??

        
Bezug
Kleinen Fermatschen Satz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 25.11.2008
Autor: rainerS

Hallo Anna!

> (Verallgemeinerung des kleinen Fermatschen Satzes) Seien p
> eine Primzahl und a [mm]\in \IZ[/mm] eine ganze Zahl mit ggT(a,p) =
> 1
>  
> i) Zeigen Sie
>                            [mm]a^{(p-1)p} \equiv[/mm] 1  mod [mm]p^{2}.[/mm]
>  
> Hinweis: Schreiben Sie [mm]a^{p-1}[/mm] mit Hilfe des kleinen Satzes
> von Fermat in  
> der Form 1 + kp mit k [mm]\in \IZ[/mm]
>  
> ii) Beweisen Sie die allgemeinere Aussage, dass für alle l
> [mm]\in \IN_{0}[/mm] die folgende Kongruenz gilt:
>      
> [mm]a^{(p-1)p^{l}} \equiv[/mm] 1  mod [mm]p^{l+1}.[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Also ich habe mir zur i) überlegt:
>  
> Wenn [mm]a^{p-1}[/mm] kongruent 1 modulo p gilt, dann ist [mm]a^{p-1} = m \* p+1 [/mm]
>  
> [mm]\Rightarrow a^{(p-1)\*(p^k)} = (a^{p-1})^{p^k}[/mm]
>                  = [mm](m\*p+1)^{p^k}[/mm]
>                  =  [mm]\summe_{v=0}^{p^{k}} ((p^{k}[/mm] über [mm]v)\*(m\*p)^{v})[/mm]
>                  = 1 + [mm]p^{k+1} \* \summe_{v=1}^{p^{k}}(((p^{k}[/mm] über  [mm]v)/(p^{k}))\*(m\*p)^{v-1})[/mm]

Da ist ein Faktor m verlorengegangen, das ändert aber nichts am Ergebnis:

[mm] \summe_{v=0}^{p^{k}} \vektor{p^{k}\\v}(mp)^{v} = 1 + \summe_{v=1}^{p^{k}} \vektor{p^{k}\\v}(mp)^{v} = 1 + p^{k+1} \summe_{v=1}^{p^{k}} \bruch{1}{p^k}\vektor{p^{k}\\v} (mp)^{v-1} *\red{m} [/mm]

> kongruent 1 modulo [mm]p^{k+1}[/mm]

[ok] Weil [mm] $\vektor{p^{k}\\v}$ [/mm] für [mm] $v\ge1 [/mm] $ immer durch [mm] $p^k$ [/mm] teilbar ist.

> Aber ich bin mir nicht so sicher ob das so richtig ist,
> denn in der aufgabenstellung steht ja p², deshalb bin ich
> mir unsicher.

Du bist gleich zu Teil ii) vorgestoßen, denn für k=1 kommt die Aussage für [mm] $p^2$ [/mm] heraus.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Kleinen Fermatschen Satz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mi 26.11.2008
Autor: anna88

Ahhh okii vielen vielen Dank
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]