matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionKleiner Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Kleiner Gauß
Kleiner Gauß < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleiner Gauß: Vollständige Induktion
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 06.10.2009
Autor: Semimathematiker

Hi zusammen

Nach vollständiger Induktion bekommt man:

[mm] \bruch{n(n+1)}{2} [/mm] + (n+1) = [mm] \bruch{(n+1)(n+2}{2} [/mm]

Es ist schon fast peinlich aber kann mir das jemand mal Schritt für Schritt umstellen damit rechts und links das selbe steht, ich also für rechte Seite minus linke Seite 0 = 0 herausbekomme. Für mich ist dieser Beweis erst damit abgeschlossen. Anders kann ich es nicht akzeptieren. Irgendwie bin ich noch nicht so weit dass ich sagen kann, dass die rechte Funktion das selbe beschreibt wie die linke. Sonst hätte ich den ganzen Beweis nicht gebraucht.
Vielen Dank
Semimathematiker

        
Bezug
Kleiner Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 06.10.2009
Autor: abakus


> Hi zusammen
>  
> Nach vollständiger Induktion bekommt man:
>  
> [mm]\bruch{n(n+1)}{2}[/mm] + (n+1) = [mm]\bruch{(n+1)(n+2}{2}[/mm]
>  
> Es ist schon fast peinlich aber kann mir das jemand mal
> Schritt für Schritt umstellen damit rechts und links das
> selbe steht, ich also für rechte Seite minus linke Seite 0
> = 0 herausbekomme. Für mich ist dieser Beweis erst damit
> abgeschlossen. Anders kann ich es nicht akzeptieren.

Hallo,
wenn du die beiden Ausdrücke auf der linken Seite addieren willst, musst du sie nunächst gleichnamig machen.
Gruß Abakus

> Irgendwie bin ich noch nicht so weit dass ich sagen kann,
> dass die rechte Funktion das selbe beschreibt wie die
> linke. Sonst hätte ich den ganzen Beweis nicht gebraucht.
>  Vielen Dank
>  Semimathematiker


Bezug
        
Bezug
Kleiner Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mi 07.10.2009
Autor: fred97

$ [mm] \bruch{n(n+1)}{2} [/mm]  + (n+1) = [mm] (n+1)(\bruch{n}{2}+1)= (n+1)(\bruch{n}{2}+\bruch{2}{2})=(n+1)\bruch{(n+2)}{2}$ [/mm]

FRED

Bezug
                
Bezug
Kleiner Gauß: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Do 08.10.2009
Autor: Semimathematiker

Sorry. Ich weiß echt nicht was ich da zusammengerechnet hab. Kleiner Aussetzer.... Danke Abakus und Fred. Ich musste natürlich nur mit 2 multiplizieren und auch mit 2 dividieren. Der Rest ergibt sich von selbst *kopfschüttel* :D

[mm] \bruch{n(n+1)}{2}+ \bruch{2(n+1)}{2} [/mm] = ......

Trotzdem: Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]