matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeKoeffizientenmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Numerik linearer Gleichungssysteme" - Koeffizientenmatrix
Koeffizientenmatrix < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizientenmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Fr 13.07.2012
Autor: kirschgurke

Aufgabe
Es soll der Rang der Matrix A und zur Lösbarkeitsprüfung der rang r^ für die erweiterte Koeffizientmatrix berechnet werden. Folgendes LGS gegeben.

z.B. 8x1 - 4x2 +12x3 + 12x4 = 4
       4x1 + x2 +5x3 + 16x4 = 24
        -2x1 +3x2 - 5x3 +x4    = 11
                 - 2x2 + 5x3 + 2x4 = -6

1.Als Lösung habe ich oft bei dieser Art der Aufgaben: rang der Matrix A und Rang der Koeffizientmatrix  --> r=r^ und damit unendlich viele Lösungen.

Wann ist der Rang zwischen den Beiden denn mal unterschiedlich?wie sehe das aus? Es wird als Lösung immer sofort mit Koeffizientmatrix angefangen, kann ich aus ihr also immer den Rang von A ablesen und gleichzeitig den Rang r^?

2. Wenn mann nach der Treppenform auflöst, zum lösen:
   Gibt es dann immer nur exakt eine Treppenform die sich nur evt. durch nicht gekürzte Zeilen unterscheidet?

--> Wenn ich die Treppenform erreicht habe, kann es sein, dass ich z.B. Noch in der ersten Zeile durch z.B subtrahieren der zweite 2 Variablen auf 0  bringen kann, ohne das ich die Treppenform verändere, muss ich das daher trotzdem noch ausführen?

Danke für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Koeffizientenmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Fr 13.07.2012
Autor: angela.h.b.


> Es soll der Rang der Matrix A und zur Lösbarkeitsprüfung
> der rang r^ für die erweiterte Koeffizientmatrix berechnet
> werden. Folgendes LGS gegeben.
>  
> z.B. 8x1 - 4x2 +12x3 + 12x4 = 4
>         4x1 + x2 +5x3 + 16x4 = 24
>          -2x1 +3x2 - 5x3 +x4    = 11
>                   - 2x2 + 5x3 + 2x4 = -6

Hallo,

zuerst stelle die erweiterte Koeffizientenmatrix auf und bringe sie in ZSF, evtl. auch in reduzierte ZSF.

>  1.Als Lösung habe ich oft bei dieser Art der Aufgaben:
> rang der Matrix A und Rang der Koeffizientmatrix  --> r=r^
> und damit unendlich viele Lösungen.
>  
> Wann ist der Rang zwischen den Beiden denn mal
> unterschiedlich?wie sehe das aus?

[mm] \pmat{1&2&|&3\\0&0&|&4} [/mm]


> Es wird als Lösung immer
> sofort mit Koeffizientmatrix angefangen, kann ich aus ihr
> also immer den Rang von A ablesen und gleichzeitig den Rang
> r^?

Wenn sie auf ZSF gebracht ist.

>  
> 2. Wenn mann nach der Treppenform auflöst, zum lösen:
>     Gibt es dann immer nur exakt eine Treppenform die sich
> nur evt. durch nicht gekürzte Zeilen unterscheidet?

Die ZSF (=Treppenform) ist nicht eindeutig.
Die reduzierte ZSF (=Treppennormalform) hingegen ist eindeutig.

>  
> --> Wenn ich die Treppenform erreicht habe, kann es sein,
> dass ich z.B. Noch in der ersten Zeile durch z.B
> subtrahieren der zweite 2 Variablen auf 0  bringen kann,
> ohne das ich die Treppenform verändere, muss ich das daher
> trotzdem noch ausführen?

Es wäre besser, würdest Du ein konkretes Beispiel angeben.
So ist das etwas vage.
Lösbarkeit und Dimension des Lösungsraumes kann man aus der Treppenform ablesen, mit ein paar weiteren Schritten hat man die Lösung.

Bringt man aber sofort die Treppenform auf Treppennormalform, kann man zusätzlich schnell aus der Matrix den Lösungsraum ablesen.

LG Angela

>  
> Danke für eure Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]