matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeKoeffizientenvergleich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Koeffizientenvergleich
Koeffizientenvergleich < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizientenvergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Do 07.03.2013
Autor: JamesDean

Aufgabe
Bestimmen Sie die Koeffizienten a und b mittels Koeffizientenvergleich:

3ae^(2x)+(1/5)bxe^(2x)+(a-bx)e^(2x)=5e^(2x)+3xe^(2x)

Hallo zusammen,


wie geht man am besten an so eine Aufgabe heran und mit welchen Verfahren löst man sie?

        
Bezug
Koeffizientenvergleich: umformen + zusammenfassen
Status: (Antwort) fertig Status 
Datum: 17:42 Do 07.03.2013
Autor: Roadrunner

Hallo JamesDean!


Im Grunde genommen steht doch schon alles in der Aufgabenstellung.


Forme die linke Seite der Gleichung derart um bzw. fasse zusammen, bis Du stehen hast:

[mm] $\red{(...)}*e^{2x} [/mm] \ + \ [mm] \green{(...)}*x*e^{2x}$ [/mm]


Anschließend muss gelten:

[mm] $\red{(...)} [/mm] \ = \ 5$

[mm] $\green{(...)} [/mm] \ = \ 3$


Gruß vom
Roadrunner

Bezug
                
Bezug
Koeffizientenvergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 07.03.2013
Autor: JamesDean

Aufgabe
Die linke Seite lautet: 3ae^(2x)+(1/5)bxe^(2x)+(a-bx)e^(2x)

Hey Roadrunner,

das heißt ich muss nichts weiter tun als:

=3ae^(2x)+ae^(2x)-bxe^(2x)+(1/5)bxe^(2x)

=4ae^(2x)-(4/5)bxe^(2x)

Somit wäre  a=1,25 oder 5/4

und            b=-3,75 oder -15/4

reicht das als rechenweg oder muss ich die Gleichung noch irgendwie umformen und nach a,b umstellen?

Bezug
                        
Bezug
Koeffizientenvergleich: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 18:15 Do 07.03.2013
Autor: Roadrunner

Hallo JamesDean!


Das sieht ja schon ganz gut aus. [ok]

Als Zwischenschritt könnte man noch schreiben:


Koeffizientenvergleich liefert:

$(i) \ \ 4*a \ = \ 5$

$(ii) \ \ [mm] -\bruch{4}{5}*b [/mm] \ = \ 3$




Gruß vom
Roadrunner

Bezug
                                
Bezug
Koeffizientenvergleich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Do 07.03.2013
Autor: JamesDean

Recht herzlichen Dank für deine Hilfe Roadrunner.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]