matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenKörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "komplexe Zahlen" - Körper
Körper < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 08.12.2009
Autor: Matheproof

Hallo,

ich bin mir nicht sicher, ob der Beweis so korrekt ist.

Zeige, dass [mm] (\IC, [/mm] +,*) ein Körper ist mit Nullelement 0 + i0 und Einselement  1 + i0 .

Nullelement: (0,0)
Einselement: (1,0)

Sei e=(x,y) ein Einselement. Zeige x=1, y=0.
(1,0) *(x,y) = (1,0)
Das bedeutet:
(1,0)=(1,0) * (x,y) = (1*x,1*y) = (x,y)
--> x=1 , y=0
q.e.d


Nullelement - Beweis:
z [mm] \in \IC. [/mm]
z+0=x1+y1 * i+0 = (x1+0) +y1*i = x1+y1*i =z
q.e.d



        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Di 08.12.2009
Autor: chrisno

Bei dem Aufgabentext musst Du zeigen, dass alle Körperaxiome erfüllt sind.

>  
> Sei e=(x,y) ein Einselement. Zeige x=1, y=0.
>  (1,0) *(x,y) = (1,0)
>  Das bedeutet:
>  (1,0)=(1,0) * (x,y) = (1*x,1*y) = (x,y)
>  --> x=1 , y=0

>  q.e.d

Nein, so geht das nicht. Du hast schon den Kandidaten für das Einselement. Du musst es also nicht suchen.
Du musst aber zeigen, dass bei der Multiplikation mit einem beliebigen Element dieses wieder herauskommt.

>  
>
> Nullelement - Beweis:
> z [mm]\in \IC.[/mm]
>  z+0=x1+y1 * i+0 = (x1+0) +y1*i = x1+y1*i =z
>  q.e.d
>  

Hier fehlt völlig der Text. Was soll die Multiplikation?
Du fängst an:
Sei z=x+iy aus C, beliebig.
Dann gilt z + (0, 0) = ... + ... = ... + i ... = z
Dabei musst Du bei jedem Gleichheitseichen ageben, warum das gleich ist.


Bezug
                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 08.12.2009
Autor: Matheproof

Hallo,

ich hab das jetzt so gelöst.

Beweis Einselement:

z(1 + 0i) = (x + yi) · (1 + 0i) = x · 1 − y · 0 + (x · 0 + 1 · y)i = x + yi = z

(Beweis durch Nachrechnen)


stimmt das so?

Bezug
                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Di 08.12.2009
Autor: M.Rex

Hallo

So ist es okay, ich würde allerdings noch Klammern setzen:
Es gilt:

z*(1;0)
=(x+iy)(1+0i)
=(x*1-y*0)+i(0*x+y*1)
=x+iy
=z

Marius

Bezug
                                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Mi 09.12.2009
Autor: Matheproof

Beweis: Nullelement

z+(0,0)
=(x+iy) + (0,0i)
=(x+0) + i (y+0)
= x+iy
=z

stimmt der Beweis so?

Bezug
                                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 09.12.2009
Autor: schachuzipus

Hallo Matheproof,

> Beweis: Nullelement
>  
> z+(0,0)
>  =(x+iy) + (0,0i)

Hier addierst du eine Zahl zu einem Tupel!?

>  =(x+0) + i (y+0)
>  = x+iy
>  =z
>  
> stimmt der Beweis so?

Du meinst es richtig, aber es ist totales Kauderwelsch.

Sei $z=(x,y)$

Dann ist $z+(0,0)=(x,y)+(0,0)=(x+0,y+0)=(x,y)=z$

Ebenso von der anderen Seite

Damit ist $(0,0)$ neutrales Element bzgl. + , und $(0,0)$ kannst du mit [mm] $0+i\cdot{}0=0$ [/mm] identifizieren.

Du musst genau darauf achten, auf welcher Ebene du dich bewegst. Ob auf Tupelebene oder auf Zahlebene

LG

schachuzipus


Bezug
                                                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 09.12.2009
Autor: Matheproof

Vielen Dank für die Hilfe!

müsste man dann nicht bei dem Einselement-Beweis so vorgehen?:

z*(1,0)
=(x,y)(1,0)
=(x*1-y*0),(x*0+y*1)
=(xy)
=z

LG Matheproof

Bezug
                                                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mi 09.12.2009
Autor: chrisno

Ich seh das etwas entspannter,
Du musst natürlich schreiben $z [mm] \in \IC$. [/mm]
Dann $z = x + iy $ mit $(x,y [mm] \in \IR)$. [/mm]
Aber wenn man sich soweit geeinigt hat, dass z = x + iy = (x;y), dann würde mir Deine Darstellung reichen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]