matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörper zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Körper zeigen
Körper zeigen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 25.02.2014
Autor: Babybel73

Hallo zusammen

Muss folgende Aufgabe lösen:
a) Man beweise, dass die Menge der Symbole {a+bi: a,b [mm] \in \IF_{3}}) [/mm] einen Körper mit neun Elementen bildet, wenn man Addition und Multiplikation wie bei komplexen Zahlen definiert.
b) Funktioniert dieselbe Methode auch für [mm] \IF_{5} [/mm] bzw. für [mm] \IF_{7}? [/mm] Erkläre den Sachverhalt.

Nun zu meinem Lösungsvorschlag:
a) Hier habe ich die beiden Gruppentafel bzgl. Addition und Multiplikation aufgestellt & das Distributivgesetz nachgewiesen.
Reicht das so, oder muss ich explizit alle einzelnen Körperaxiome nachweisen?

b) Muss ich hier noch einmal die beiden Gruppentafeln aufschreiben oder gibt es einen kürzeren Weg?

Vielen Dank für eure Hilfe!

        
Bezug
Körper zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 25.02.2014
Autor: leduart

Hallo
1. ja du musst wohl alle Axiome best#tigen, insbesondere Inverse. Aber das sieht man ja an den Tafeln, das musst du nur sagen.
fur die anderen würde ich das ganzahlige Gitter  in der Gaussschen Zahlenebene nehmen ,die Bereiche die aquivalent sind und zeigen, dass man da nicht rauskommt.itter
Gruß leduart


Bezug
                
Bezug
Körper zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Di 25.02.2014
Autor: Babybel73

Hallo leduart

> Hallo
>  1. ja du musst wohl alle Axiome best#tigen, insbesondere
> Inverse. Aber das sieht man ja an den Tafeln, das musst du
> nur sagen.



Ok. Dann mach ich das so!



>  fur die anderen würde ich das ganzahlige Gitter  in der
> Gaussschen Zahlenebene nehmen ,die Bereiche die aquivalent
> sind und zeigen, dass man da nicht rauskommt.



Das verstehe ich nicht ganz. Was ist den das ganzzahlige Gitter der Gaussschen Zahlenebene?



> Gruß leduart
>  


Bezug
                        
Bezug
Körper zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 25.02.2014
Autor: leduart

Hallo
die Punkte die in der Ebene liegen mit a,b [mm] \in F_5 [/mm]
Gruß leduart> Hallo leduart

>  
> > Hallo
>  >  1. ja du musst wohl alle Axiome best#tigen,
> insbesondere
> > Inverse. Aber das sieht man ja an den Tafeln, das musst du
> > nur sagen.
>  
>
>
> Ok. Dann mach ich das so!
>
>
>
> >  fur die anderen würde ich das ganzahlige Gitter  in der

> > Gaussschen Zahlenebene nehmen ,die Bereiche die aquivalent
> > sind und zeigen, dass man da nicht rauskommt.
>  
>
>
> Das verstehe ich nicht ganz. Was ist den das ganzzahlige
> Gitter der Gaussschen Zahlenebene?
>
>
>
> > Gruß leduart
>  >  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]