matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörperaxiome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Körperaxiome
Körperaxiome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperaxiome: Beweis von Körperaxiomen
Status: (Frage) beantwortet Status 
Datum: 20:37 Mi 07.11.2012
Autor: iced

Aufgabe
Es sei n eine natürliche Zahl. Arithmetik modulo n auf der Menge [mm] \IF_{n} [/mm] = {0, ... , n-1} wird wie folgt definiert: Addiere oder multipliziere wie gewohnt, dann subtrahiere das größtmögliche Vielfache von n, so dass das Ergebnis in [mm] \IF_{n} [/mm] liegt.

(a) Zeigen Sie, dass [mm] \IF_{3} [/mm] ein Körper unter Arithmetik modulo 3 ist, und dass [mm] \IF_{3} [/mm] sich nicht zu einem geordneten Körper machen läßt.

Hallo zusammen!

Die obige Aufgabe habe ich bereits teilweise gelöst und bräuchte noch klein wenig Hilfe bei dem Rest. Gelöst habe ich bereits:

Um zu zeigen, dass [mm] \IF_{3} [/mm] ein Körper modulo 3 ist, müssen die Axiome (A1)-(A9) gelten. Diese sind:

(A1) Assoziativgesetz der Addition
(A2) Kommutativgesetz der Addition (gezeigt)
(A3) Existenz der additiven Identität (gezeigt)
(A4) Existenz additiver Inverser (gezeigt)
(A5) Assoziativgesetz der Multiplikation
(A6) Kommutativgesetz der Multiplikation (gezeigt)
(A7) Existenz der multiplikativen Identität (gezeigt)
(A8) Existenz multiplikativer Inverser (gezeigt)
(A9) Distributivgesetz

Es müssen also noch die Axiome (A1), (A5) und (A9) gezeigt werden. Dass [mm] \IF_{3} [/mm] sich nicht zu einem geordneten Körper machen lässt ist auch bereits bewiesen, da die Monotoniegesetze verletzt werden.

Könnt ihr mir helfen auch noch die letzten 3 Axiome zu beweisen?

Viele Grüße
Pascal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Do 08.11.2012
Autor: schachuzipus

Hallo Pascal,


> Es sei n eine natürliche Zahl. Arithmetik modulo n auf der
> Menge [mm]\IF_{n}[/mm] = {0, ... , n-1} wird wie folgt definiert:
> Addiere oder multipliziere wie gewohnt, dann subtrahiere
> das größtmögliche Vielfache von n, so dass das Ergebnis
> in [mm]\IF_{n}[/mm] liegt.
>  
> (a) Zeigen Sie, dass [mm]\IF_{3}[/mm] ein Körper unter Arithmetik
> modulo 3 ist, und dass [mm]\IF_{3}[/mm] sich nicht zu einem
> geordneten Körper machen läßt.
>  Hallo zusammen!
>  
> Die obige Aufgabe habe ich bereits teilweise gelöst und
> bräuchte noch klein wenig Hilfe bei dem Rest. Gelöst habe
> ich bereits:
>  
> Um zu zeigen, dass [mm]\IF_{3}[/mm] ein Körper modulo 3 ist,
> müssen die Axiome (A1)-(A9) gelten. Diese sind:
>  
> (A1) Assoziativgesetz der Addition
>  (A2) Kommutativgesetz der Addition (gezeigt)
>  (A3) Existenz der additiven Identität (gezeigt)
>  (A4) Existenz additiver Inverser (gezeigt)
>  (A5) Assoziativgesetz der Multiplikation
>  (A6) Kommutativgesetz der Multiplikation (gezeigt)
>  (A7) Existenz der multiplikativen Identität (gezeigt)
>  (A8) Existenz multiplikativer Inverser (gezeigt)
>  (A9) Distributivgesetz
>  
> Es müssen also noch die Axiome (A1), (A5) und (A9) gezeigt
> werden. Dass [mm]\IF_{3}[/mm] sich nicht zu einem geordneten Körper
> machen lässt ist auch bereits bewiesen, da die
> Monotoniegesetze verletzt werden.
>  
> Könnt ihr mir helfen auch noch die letzten 3 Axiome zu
> beweisen?

Das bekommst du selber hin.

Rechne es einfach für alle Tripel von Elementen aus [mm] $F_3$ [/mm] explizit nach (oder vor). Soviele Kombinationsmöglichkeiten gibt es ja nicht und wegen der Kommutativität von Addition und Multiplikation sparst du auch was ein ...

Einfach systematisch die Fälle durchgehen ...

>  
> Viele Grüße
>  Pascal
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Körperaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Do 08.11.2012
Autor: iced

Hallo schachuzipus,

danke schonmal für deine Antwort. Das man das durchkombinieren kann ist mir klar, aber das sind immerhin 27 Möglichkeiten. Meine Frage war eher, ob man das nicht allgemeiner zeigen kann?

Viele Grüße
Pascal

Bezug
                        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Do 08.11.2012
Autor: wieschoo

Ich zitiere:

> Soviele Kombinationsmöglichkeiten gibt es ja nicht und wegen der
> Kommutativität von Addition und Multiplikation sparst du auch was ein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]