matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKörpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Körpererweiterung
Körpererweiterung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:34 Mo 21.02.2005
Autor: cloe

Hallo,

ich hab da folgende Aufgabe.

Ist  [mm] \IQ( \wurzel{2}): \IQ [/mm] normal, separabel, galoissche Körpererweiterung?

Dazu hatten wir folgende Lösung bekommen.

Normal: ja, da Körpergrad 2
Separabel: ja da  [mm] \IQ [/mm] die Charakteristik 0 hat.
Galoisch: ja, da normal und separabel.

Nun versteh ich nicht, warum beim Körpergrad 2 die Körpererweiterung normal ist und warum separabel bei der Charakteristik 0.

Kann mir da bitte jemand weiterhelfen.

cloe

        
Bezug
Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Mo 21.02.2005
Autor: manil

Hallo Cloe.

Also, eine Erweiterung [mm]L:K[/mm] heißt bekanntlich normal, wenn sie algebraisch ist und jedes irreduzible Polynom aus [mm]K[\tau][/mm] in L vollständig zerfällt.

Ist nun [mm][L:K] < \infty[/mm] so sind äquivalent:
i) [mm]L:K[/mm] ist normal
ii) [mm]L:K[/mm] ist Zerfällungskörper eines Polynoms[mm] f \in K[\tau][/mm]

(Beweis siehe z.B. Meyberg II S. 46)


Eine Erweiterung  [mm]L:K[/mm] heißt separabel, wenn jedes Element aus L über K separabel ist, d.h. Wurzel eines separablen Polynoms ist, d.h.wenn von diesem Polynom jeder irreduzible Faktor nur einfache Wurzeln hat.

Nun hat ein irreduzibles Polynom [mm]f \in K[\tau] [/mm]  genau dann mehrfache Wurzeln (ist also nicht separabel), wenn für die  algebraische Ableitung gilt: [mm]f'=0[/mm]

Die Ableitung eines Polynoms [mm]f \in K[\tau]\setminus K[/mm] aus einem Körper der Chrakteristik 0 ist aber immer  [mm]\not= 0[/mm] . Also ist hier jedes Polynom separabel (solche Körper heißen vollkommen).
Ich hoffe, es ist alles klar.

Das irreduzible Polynom hier ist übrigens klar: [mm]f(\tau)=\tau^2-2[/mm]

Grüße
manil






Bezug
        
Bezug
Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Mo 21.02.2005
Autor: Julius

Hallo!

Vielleicht ist dir ja beim ersten Teil nicht klar, warum bei einer Körpererweiterung $L:K$ vom Grad 2 automatisch $L$ der Zerfällungskörper von $K$ ist. Dies ist aber nicht schwierig: Ist nämlich [mm] $\{1,\alpha\}$ [/mm] eine Basis von $L$ über $K$ und $f$ das Minimalpolynom von [mm] $\alpha$, [/mm] dann liegt auch die andere Nullstelle von $f$ in $L$. (Dies gilt immer für quadratische Polynome: Liegt eine der beiden Nullstellen in einem gewissen Körper, dann auch die andere. Ist dir das klar?)

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]